Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(7): 075001, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542943

RESUMO

A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

2.
Rev Sci Instrum ; 92(5): 053508, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243260

RESUMO

Optimized operation of fusion devices demands detailed understanding of plasma transport, a problem that must be addressed with advances in both measurement and data analysis techniques. In this work, we adopt Bayesian inference methods to determine experimental particle transport, leveraging opportunities from high-resolution He-like ion spectra in a tokamak plasma. The Bayesian spectral fitting code is used to analyze resonance (w), forbidden (z), intercombination (x, y), and satellite (k, j) lines of He-like Ca following laser blow-off injections on Alcator C-Mod. This offers powerful transport constraints since these lines depend differently on electron temperature and density, but also differ in their relation to Li-like, He-like, and H-like ion densities, often the dominant Ca charge states over most of the C-Mod plasma radius. Using synthetic diagnostics based on the AURORA package, we demonstrate improved effectiveness of impurity transport inferences when spectroscopic data from a progressively larger number of lines are included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA