Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chemistry ; 30(20): e202400038, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38287792

RESUMO

The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.

2.
J Phys Chem A ; 128(17): 3361-3369, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38651632

RESUMO

Despite being an important closo-borate in condensed phase boron chemistry, isolated [B10H10]2- is electronically unstable and has never been detected in the gas phase. Herein, we report a successful capture of this fleeting species through binding with an octamethylcalix[4]pyrrole (omC4P) molecule to form a stable gaseous omC4P·[B10H10]2- complex and its characterizations utilizing negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum, contributed by both omC4P and [B10H10]2-, is deconvoluted by subtracting the omC4P contribution to yield a [B10H10]2- spectrum. The obtained [B10H10]2- spectrum consists of four major bands spanning the electron binding energy (EBE) range from 1 to 5 eV, with the EBE gaps matching excellently with the energy intervals of computed high-lying occupied molecular orbitals of the [B10H10]2- dianion. This study showcases a generic method to utilize omC4P to capture unstable multiply charged anions in the gas phase for experimental determination of their electronic structures.

3.
J Phys Chem A ; 128(33): 6981-6988, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39112434

RESUMO

Microhydrated closo-boranes have attracted great interest due to their superchaotropic activity related to the well-known Hofmeister effect and important applications in biomedical and battery fields. In this work, we report a combined negative ion photoelectron spectroscopy and quantum chemical investigation on hydrated closo-decaborate clusters [B10H10]2-·nH2O (n = 1-7) with a direct comparison to their analogues [B12H12]2-·nH2O and free water clusters. A single H2O molecule is found to be sufficient to stabilize the intrinsically unstable [B10H10]2- dianion. The first two water molecules strongly interact with the solute forming B-H···H-O dihydrogen bonds while additional water molecules show substantially reduced binding energies. Unlike [B12H12]2-·nH2O possessing a highly structured water network with the attached H2O molecules arranged in a unified pattern by maximizing B-H···H-O dihydrogen bonding, distinct structural arrangements of the water clusters within [B10H10]2-·nH2O are achieved with the water cluster networks from trimer to heptamer resembling free water clusters. Such a distinct difference arises from the variations in size, symmetry, and charge distributions between these two dianions. The present finding again confirms the structural diversity of hydrogen-bonding networks in microhydrated closo-boranes and enriches our understanding of aqueous borate chemistry.

4.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341708

RESUMO

We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.

5.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39105554

RESUMO

Conducting a comprehensive molecular-level evaluation of a photoacid generator (PAG) and its subsequent impact on lithography performance can facilitate the rational design of a promising 193 nm photoresist tailored to specific requirements. In this study, we integrated spectroscopy and computational techniques to meticulously investigate the pivotal factors of three prototypical PAG anions, p-toluenesulfonate (pTS-), 2-(trifluoromethyl)benzene-1-sulfonate (TFMBS-), and triflate (TF-), in the lithography process. Our findings reveal a significant redshift in the absorption spectra caused by specific PAG anions, attributed to their involvement in electronic transition processes, thereby enhancing the transparency of the standard PAG cation, triphenylsulfonium (TPS+), particularly at ∼193 nm. Furthermore, the electronic stability of PAG anions can be enhanced by solvent effects with varying degrees of strength. We observed the lowest vertical detachment energy of 6.6 eV of pTS- in PGMEA solution based on the polarizable continuum model, which prevents anion loss at 193 nm lithography. In addition, our findings indicate gas-phase proton affinity values of 316.4 kcal/mol for pTS-, 308.1 kcal/mol for TFMBS-, and 303.2 kcal/mol for TF-, which suggest the increasing acidity strength, yet even the weakest acid pTS- is still stronger than strong acid HBr. The photolysis of TPS+-based PAG, TPS+·pTS-, generated an excited state leading to homolysis bond cleavage with the lowest reaction energy of 83 kcal/mol. Overall, the PAG anion pTS- displayed moderate acidity, possessed the lowest photolysis reaction energy, and demonstrated an appropriate redshift. These properties collectively render it a promising candidate for an effective acid producer.

6.
J Phys Chem A ; 127(42): 8828-8833, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37844075

RESUMO

Negative ion photoelectron spectra at 20 K along with ab initio [CCSD(T)] and M06-2X density functional theory calculations are reported for a series of six basic and nucleophilic pyridine derivatives with an anionic substituent [i.e., 3- and 4-PyrBX3-, where X = F, 4-t-BuC6H4, 4-MeOC6H4, and 3,5-(MeO)2C6H3]. Vertical detachment energies (VDEs) of these charge-activated reagents span from 4.50-5.85 eV and are well reproduced by M06-2X/aug-cc-pVTZ and CCSD(T)/maug-cc-pVTZ computations. Surprisingly, the VDEs are found to correlate with the SN2 reactivity of the PPh4+ salts of the substituted pyridine anions with 1-iodooctane in dichloromethane. This provides an experimental measure of the nucleophilicity of these charge-activated anions, which represent a new class of chemical reagent.

7.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37466228

RESUMO

We report a joint negative ion photoelectron spectroscopy (NIPES) and quantum chemical computational study on glycine-chloride/bromide complexes (denoted Gly·X-, X = Cl/Br) in close comparison to the previously studied Gly·I- cluster ion. Combining experimental NIPE spectra and theoretical calculations, various Gly·X- complexes were found to adopt the same types of low-lying isomers, albeit with different relative energies. Despite more congested spectral profiles for Gly·Cl- and Gly·Br-, spectral assignments were accomplished with the guidance of the knowledge learned from Gly·I-, where a larger spin-orbit splitting of iodine afforded well-resolved, recognizable spectral peaks. Three canonical plus one zwitterionic isomer for Gly·Cl- and four canonical conformers for Gly·Br- were experimentally identified and characterized in contrast to the five canonical ones observed for Gly·I- under similar experimental conditions. Taken together, this study investigates both genericity and variations in binding patterns for the complexes composed of glycine and various halides, demonstrating that iodide-tagging is an effective spectroscopic means to unravel diverse ion-molecule binding motifs for cluster anions with congested spectral bands by substituting the respective ion with iodide.

8.
J Am Chem Soc ; 144(42): 19317-19325, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36166618

RESUMO

Photochemical behaviors of pyruvic acid in multiple phases have been extensively studied, while those of its conjugate base, the pyruvate anion (CH3COCOO-, PA-) are less understood and remain contradictory in gaseous versus aqueous phases. Here in this article, we report a joint experimental and theoretical study combining cryogenic, wavelength-resolved negative ion photoelectron spectroscopy (NIPES) and high-level quantum chemical computations to investigate PA- actinic photochemistry and its dependence on microsolvation in the gas phase. PA-·nH2O (n = 0-5) clusters were generated and characterized, with their low-lying isomers identified. NIPES conducted at multiple wavelengths across the PA- actinic regime revealed the PA- photochemistry extremely sensitive to its hydration extent. While bare PA- anions exhibit active photoinduced dissociations that generate the acetyl (CH3CO-), methide (CH3-) anions, their corresponding radicals, and slow electrons, one single attached water molecule results in significant suppression with a subsequent second water being able to completely block all dissociation pathways, effectively annihilating all PA- photochemical reactivities. The underlying dissociation mechanisms of PA-·nH2O (n = 0-2) clusters are proposed involving nπ* excitation, dehydration, decarboxylation, and further CO loss. Since the photoexcited dihydrate does not have sufficient energy to overcome the full dehydration barrier before PA- could fragmentate, the PA- dissociation pathway is completely blocked, with the energy most likely released via loss of one water and internal electronic and vibrational relaxations. The insight unraveled in this work provides a much-needed critical link to connect the seemingly conflicting PA- actinic chemistry between the gas and condensed phases.


Assuntos
Ácido Pirúvico , Água , Humanos , Água/química , Estrutura Molecular , Desidratação , Ânions/química , Gases/química , Íons
9.
Inorg Chem ; 61(46): 18769-18778, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36356222

RESUMO

Reaction of Li2C2 with elemental selenium in a molar ratio of 1:2 in liquid ammonia led to the formation of the ammoniate Li2[SeC2Se]·2NH3. Its crystal structure was solved and refined from high-resolution synchrotron powder diffraction data (P21/c, Z = 4). It contains the -Se-C≡C-Se- anion, unprecedented in a crystalline material, whose existence was corroborated by IR/Raman spectra and electronic-structure theory, showing an almost perfect agreement with calculated spectra. Elaborated magnetic-bottle and velocity-map imaging photoelectron spectroscopic investigations show that the -Se-C≡C-Se• radical anion can be transferred to the gas phase, where it was analyzed by NIPE (Negative Ion Photoelectron) and VMI (Velocity-Map Imaging) spectra, which correlate nicely with simulated spectra based on 2Πu → 3Σg- and 2Πu → 1Σg+ transitions including spin-orbit couplings.

10.
J Chem Phys ; 157(11): 114304, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137790

RESUMO

The precise ionization energy of praseodymium oxide (PrO) seeded in supersonic molecular beams is measured with mass-analyzed threshold ionization (MATI) spectroscopy. A total of 33 spin-orbit (SO) states of PrO and 23 SO states of PrO+ are predicted by second-order multiconfigurational quasi-degenerate perturbation (MCQDPT2) theory. Electronic transitions from four low-energy SO levels of the neutral molecule to the ground state of the singly charged cation are identified by combining the MATI spectroscopic measurements with the MCQDPT2 calculations. The precise ionization energy is used to reassess the ionization energies and the reaction enthalpies of the Pr + O → PrO+ + e- chemi-ionization reaction reported in the literature. An empirical formula that uses atomic electronic parameters is proposed to predict the ionization energies of lanthanide monoxides, and the empirical calculations match well with available precise experimental measurements.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(6): 1049-1055, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36373645

RESUMO

Coronaviruses are a major source of emerging infectious diseases in recent years.With a variety of family members,wide host spectrum,and diverse mutant strains,coronaviruses have demonstrated unique advantages in evolution.This paper reviews the research progress of coronaviruses from genome characteristics,host animals,distribution of receptorsand gene mutations,summarizes the advantages of coronaviruses in evolution and transmission,aiming to draw attention to the prevention and control of such viruses.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Coronavirus/genética , Filogenia
12.
Phys Chem Chem Phys ; 23(24): 13447-13457, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34008657

RESUMO

A fundamental understanding of cyclodextrin-closo-dodecaborate inclusion complexes is of great interest in supramolecular chemistry. Herein, we report a systematic investigation on the electronic structures and intramolecular interactions of perhalogenated closo-dodecaborate dianions B12X122- (X = F, Cl, Br and I) binding to α-, ß-, and γ-cyclodextrins (CDs) in the gas phase using combined negative ion photoelectron spectroscopy (NIPES) and density functional theory (DFT) calculations. The vertical detachment energy (VDE) of each complex and electronic stabilization of each dianion due to the CD binding (ΔVDE, relative to the corresponding isolated B12X122-) are determined from the experiments along α-, ß- and γ-CD in the form of VDE (ΔVDE): 4.00 (2.10), 4.33 (2.43), and 4.30 (2.40) eV in X = F; 4.09 (1.14), 4.64 (1.69), and 4.69 (1.74) eV in X = Cl; 4.11 (0.91), 4.58 (1.38), and 4.70 (1.50) eV in X = Br; and 3.54 (0.74), 3.88 (1.08), and 4.05 (1.25) eV in X = I, respectively. All complexes have significantly higher VDEs than the corresponding isolated dodecaborate dianions with ΔVDE spanning from 0.74 eV at (α, I) to 2.43 eV at (ß, F), sensitive to both host CD size and guest substituent X. DFT-optimized complex structures indicate that all B12X122- prefer binding to the wide openings of CDs with the insertion depth and binding motif strongly dependent on the CD size and halogen X. Dodecaborate anions with heavy halogens, i.e., X = Cl, Br, and I, are found outside of α-CD, while B12F122- is completely wrapped by γ-CD. Partial embedment of B12X122- into CDs is observed for the other complexes via multipronged B-XH-O/C interlocking patterns. The simulated spectra based on the density of states agree well with those of the experiments and the calculated VDEs well reproduce the experimental trends. Molecular orbital analyses suggest that the spectral features at low binding energies originated from electrons detached from the dodecaborate dianion, while those at higher binding energies are derived from electron detachment from CDs. Energy decomposition analyses reveal that the electrostatic interaction plays a dominating role in contributing to the host-guest interactions for the X = F series partially due to the formation of a O/C-HX-B hydrogen bonding network, and the dispersion forces gradually become important with the increase of halogen size.

13.
J Phys Chem A ; 125(10): 2154-2162, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33661632

RESUMO

We present a transition state spectroscopic study of the OH + H2O reaction using the experimental technique of cryogenic negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum at 193 nm exhibits multiple vibrational progressions that include excitations to the shared H atom antisymmetric stretching mode with an interval of 0.32 eV as well as other progressions, mainly involving the H bending and O···O symmetric stretching modes. The vertical detachment energy (VDE) was measured at 3.53 eV, whereas an upper limit for the adiabatic detachment energy (ADE) was estimated at 2.90 eV. These values are in excellent agreement with the theoretically computed values of 3.51 and 2.87 eV, respectively, obtained at the CCSD(T)/aug-cc-pV5Z level of theory. The recorded NIPE spectrum is in very good agreement when compared to the one recently reported from four-dimensional Franck-Condon simulations, in which a similar spectral profile was predicted. Besides observing the ground state, we identified a charge-transfer excited state in the form of [OH-(H2O)+] with a relative energy of 1.39 eV, well matching the previous prediction of 1.36 eV.

14.
J Phys Chem A ; 125(18): 3928-3935, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33949195

RESUMO

Six monosolvated cyanate analogue clusters ECX-·Sol (ECX- = NCSe-, AsCSe-, and AsCS-; Sol = H2O and CH3CN) were investigated using negative ion photoelectron spectroscopy (NIPES). NIPES experiments show that these clusters possess similar spectra overall compared to their respective isolated ECX- anions but shift to higher electron binding energy with CH3CN solvent, stabilizing the excess electrons slightly more than H2O. For the ECX-·H2O series, vertical detachment energies and their increments relative to the bare species are measured to be 3.700/0.370, 3.085/0.415, and 3.085/0.430 eV for NCSe-, AsCSe- and AsCS-, respectively, while the corresponding values in the ECX-·CH3CN series are 3.835/0.505, 3.145/0.475, and 3.135/0.480 eV. Ab initio electronic structure calculations indicate that the excess charges were located at the terminal N and Se atoms in NCSe- and migrated to the central C atom in AsCSe- and AsCS-. For NCSe-, the solvation is driven by the interactions with the two negatively charged terminal ends, while for AsCSe- and AsCS-, the solvation revolves around the interactions with the central C atom, where all the excess negative charge is concentrated. Two nearly degenerate isomers for NCSe-·H2O are identified, one forming a single strong N···H-O hydrogen bond (HB) and the other featuring a bidentate HB with two hydroxyl H atoms pointing to N and Se ends. In contrast, the negative central C atom in AsCSe-/AsCS- allows the formation of a bifurcated HB with H2O. Similar effects are observed for the acetonitrile case, in which the three H atoms of the methyl group interact with the two negatively charged terminal ends in NCSe-, while preferring to bind to the central negative carbon atom in AsCSe-/AsCS-. The different binding motifs derived in this work may suggest different solvation properties in NCSe- versus AsCSe-/AsCS- with the former anion leading to asymmetric solvation at the N end of the solute, while the latter species creates more "isotropic" solvation around the central C equatorial plane.

15.
J Phys Chem A ; 125(9): 1941-1948, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651628

RESUMO

Mass-analyzed threshold ionization (MATI) spectroscopy was used to measure the vibronic spectra of LnO (Ln = La and Ce). Single-reference coupled cluster and relativistic multireference configuration calculations were carried out to compare with the measured vibronic energies. The spectrum of LaO displays a single vibronic band system, while that of CeO shows multiple ones. The ionization energies of LaO and CeO are measured as 5.2446(6) and 5.3332(6) eV, respectively, which are a 100-fold improvement over the literature values. The vibrational energies of the neutral molecule and corresponding ion reveal the charge effect on the metal-oxygen bond of both species. The single band system in the spectrum of LaO arises from the transition of the ground state of the neutral molecule with the La(6s1)O(2p6) valence configuration to the ground state of the singly charged ion with the La(6s0)O(2p6) configuration. The multiple band systems in the spectrum of CeO are attributed to the spin-orbit coupling for the Ce(4f16s1)O(2p6) configuration of the neutral molecule and an excited state for the Ce(4f1)O(2p6) configuration of the ion.

16.
J Phys Chem A ; 125(3): 746-753, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33295772

RESUMO

A great deal of effort has been focused on developing a metal-free catalytic system for epoxidation of unreactive alkenes. Fluoroketones are thought as remarkably promising catalysts for epoxidation reactions. The combination of fluorinated alcohols and catalytic amounts of hexafluoroacetone (HFA) gives a versatile and effective medium for epoxidation of various olefins with hydrogen peroxide. However, the fundamental physicochemical properties of HFA remained largely unclear, although they were very important to understand the related interactions. Here, we performed a joint study on the electron affinity and electronic structure of HFA employing negative ion photoelectron (NIPE) spectroscopy and quantum chemistry calculations. Two distinct bands with complicated vibrational progressions were observed in the 193 nm NIPE spectrum. The adiabatic/vertical detachment energies (ADE/VDE) were derived to be 1.42/2.06 and 4.43/4.86 eV for the ground singlet state and excited triplet state, respectively. Using the optimized geometries and vibrational frequencies of the anion and the neutral, the Franck-Condon factors were calculated for electron detachments to produce HFA in its lowest singlet and triplet states. Good agreements are obtained hereby for both bands between the experimental and calculated NIPE spectra, when taking into account combination vibrational excitations, unequivocally revealing that HFA possesses a singlet ground state with a giant singlet-triplet energy difference (ΔEST). The electron affinity (EA) and ΔEST of HFA were therefore determined to be EA = 1.42 ± 0.02 eV and ΔEST = -3.01 eV.

17.
Phys Chem Chem Phys ; 22(35): 19459-19467, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32578641

RESUMO

This work shows elusive carbonic acid being effectively stabilized in the gas phase by interacting with halide anions X- (X = F, Cl, Br, and I). The formed H2CO3·X- complexes, characterized by negative ion photoelectron spectroscopy and ab initio calculations, all contain intact trans-trans carbonic acid binding onto the respective halide via two identical strong ionic O-HX- hydrogen bonds. For X = Cl, Br, and I, the complex spectra exhibit the corresponding X- signature by simply shifting to the higher binding energy side, while an extremely 2 eV wide broader band is observed for X = F. This spectroscopic evidence indicates that an excess electron is removed from each halide in the former case, while a proton is transferred from carbonic acid to fluoride upon electron detachment for the latter. The above H2CO3·X- structures as well as those of the previously studied H2SO4·X- along the homologous halogen series cannot be explained using the proton affinity (PA) argument. Instead, a qualitative correlation is found between these structural motifs and the constituent acid pKa values, strongly suggesting that pKa is a more suitable factor to predict correct acid-base chemistry between these diprotic oxyacids and halides.

18.
J Phys Chem A ; 124(16): 3214-3219, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32250629

RESUMO

The recently synthesized acetylide compound KSeCCH containing the main group element selenium within the novel and in crystalline form unprecedented [SeCCH]- anion was successfully investigated in the gas phase by high-resolution velocity-map imaging (VMI) and magnetic-bottle (MB) photoelectron spectroscopy coupled with an electrospray ionization source. Both VMI and MB spectra exhibited identical electron affinities (EA, 2.517 ± 0.002 eV), spin-orbit coupling (SOC) splittings (1492 ± 20 cm-1), and Se-C stretching frequencies (573 ± 20 cm-1) of the corresponding neutral tetra-atomic radical [SeCCH]• with the VMI spectrum possessing six times higher spectral resolution compared with the MB spectrum. These experimental values were well reproduced by calculations at the CCSD(T) level, in which both the isolated [SeCCH]- anion and the [SeCCH]• radical adopted linear geometries. The simulated spectra based on the calculated Franck-Condon factors, the SOC splitting, and the experimental line width matched well with the measured spectra. Furthermore, comparisons of the EA and SOC splitting values with the previously reported isolobal species [SeCN]• are also made and discussed. The decrease in the EA and SOC splitting of [SeCCH]• is ascribed to the differences in the electronegativities between C and N atoms as well as the electron density on the Se atom in its singly occupied molecular orbital (SOMO).

19.
J Phys Chem A ; 124(10): 2036-2045, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32077296

RESUMO

The interactions between hexafluoroisopropanol (HFIP) and halogen anions X- (F-, Cl-, Br-, and I-) have been investigated using negative ion photoelectron (NIPE) spectroscopy and ab initio calculations. The measured NIPE spectrum of each [HFIP·X]- (X = Cl, Br, and I) complex shows a pattern identical to the corresponding X- by shifting to the high electron binding energy side, indicative of the formation of the [HFIP···X-] structure in which X- interacts with HFIP via charge-dipole interactions. However, the spectrum of [HFIP·F]- appears completely different from that of F- and is more similar to the spectrum of the deprotonated HFIP anion (HFIP-H-). The geometry and electron density calculations indicate that a neutral HF molecule is formed upon HFIP interacting with F- via proton transfer, rendering a stable structure of [HFIP-H···HF]-. Two conformers of [HFIP-H·HF]- with HFIP being in synperiplanar and antiperiplanar configurations, respectively, are observed, providing direct experimental evidences to show the distinctly different and orientation-specific interactions between HFIP and halide anions.

20.
J Chem Phys ; 151(12): 124307, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575165

RESUMO

Ce atom reactions with ethylene, 2-butene, and isobutene are carried out in a pulsed laser vaporization molecule beam source. Ce-containing species are observed with time-of-flight mass spectrometry, and Ce(C4H6) is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and relativistic quantum chemical calculations. Two structural isomers are identified for Ce(C4H6): one is the tetrahedronlike Ce[C(CH2)3] in C3v symmetry and the other is the five-membered metallocyclic Ce(CH2CHCHCH2) in Cs. The MATI spectrum of the C3v isomer exhibits two vibronic band systems separated by 88 cm-1, while that of the Cs isomer displays three split by 60 and 101 cm-1. The multiple band systems are attributed to spin-orbit splitting and vibronic transitions involving metal-hydrocarbon and hydrocarbon-based vibrations. The splitting in the C3v isomer arises from interactions of two triplet and two singlet states at the lowest energies, while each splitting in the Cs isomer involves two triplets and a singlet. Although the Ce atom has ground electron configuration 4f15d16s2, Ce valence electron configurations in both isomers are 4f16s1 in the neutral ground state and 4f1 in the ion. The remaining Ce 5d electrons in the isolated atom are spin paired in molecular orbitals that are a bonding combination between Ce 5dπ and hydrocarbon π* orbitals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA