Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bull Environ Contam Toxicol ; 109(6): 1018-1022, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36318303

RESUMO

DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main ingredient in SeaNine-211, a new antifouling agent that replaces organotin compounds to prevent the growth of fouling organisms on board. Biocides from antifoulants can cause problems for marine ecosystems by destroying non-target algal species. This study evaluated the potential adverse effects DCOIT using the Marine Chlorella sp. The concentration of DCOIT were set according to the semi-inhibitory concentrations for acute exposure experiments, and relevant oxidative stress indicators were measured to assess the acute toxic effects. The results showed that the inhibition concentrations (IC50) of DCOIT against Marine Chlorella sp was 2.522 mg/L. The genes related to photosynthesis and antioxidant capacity showed the effect of promoting low concentration and inhibiting high concentration. In addition, based on the ultrastructural observation and the expression analysis of photosynthesis related genes, it was found that DCOIT had a significant effect on plant photosynthesis.


Assuntos
Incrustação Biológica , Chlorella , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Incrustação Biológica/prevenção & controle , Ecossistema , Tiazóis/toxicidade
2.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816927

RESUMO

Sensor-clouds are a combination of wireless sensor networks (WSNs) and cloud computing. The emergence of sensor-clouds has greatly enhanced the computing power and storage capacity of traditional WSNs via exploiting the advantages of cloud computing in resource utilization. However, there are still many problems to be solved in sensor-clouds, such as the limitations of WSNs in terms of communication and energy, the high latency, and the security and privacy issues due to applying a cloud platform as the data processing and control center. In recent years, mobile edge computing has received increasing attention from industry and academia. The core of mobile edge computing is to migrate some or all of the computing tasks of the original cloud computing center to the vicinity of the data source, which gives mobile edge computing great potential in solving the shortcomings of sensor-clouds. In this paper, the latest research status of sensor-clouds is briefly analyzed and the characteristics of the existing sensor-clouds are summarized. After that we discuss the issues of sensor-clouds and propose some applications, especially a trust evaluation mechanism and trustworthy data collection which use mobile edge computing to solve the problems in sensor-clouds. Finally, we discuss research challenges and future research directions in leveraging mobile edge computing for sensor-clouds.

3.
Environ Sci Pollut Res Int ; 30(10): 26387-26396, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36367644

RESUMO

Triphenyltin (TPT) is a herbicide and antifouling agent that has been widely used. After TPT flows into water bodies, it will cause toxic effects on marine life. We evaluated the effect of environmental concentration level (0, 10, 100, and 200 ng/L) on the cell density, antioxidant capability, and photosynthesis-related genes in the marine Chlorella sp. The results showed that 10 and 100 ng/L TPT can promote the growth of marine Chlorella sp., 200 ng/L TPT can inhibit the growth of marine Chlorella sp., and the TPT toxicity was accumulative. The chlorophyll composition changed. The content of chlorophyll a in 100 ng/L and 200 ng/L groups was significantly higher than that in the control group (p < 0.05) in 13 days. The content of chlorophyll b in the 100 ng/L and 200 ng/L groups in 1 day and 13 days was significantly different from that in the control group (p < 0.05). The content of total chlorophyll in the 100 ng/L and 200 ng/L groups in 13 days was higher than that in the control group (p < 0.05). The 200 ng/L group began to suffer oxidative damage on the 12th day, and the pigment protein complex responded to oxidative damage through self-feedback regulation. On the 18th day, chld, cao, psy, rbcS, and rbcL genes were downregulated, and psbA gene was upregulated in the 10 ng/L and 100 ng/L groups, which may be a feedback regulation of self-oxidative damage. This paper analyzed toxicity of environmental levels of TPT to marine Chlorella sp., which provided new data support for the comprehensive evaluation of its marine ecological toxicity.


Assuntos
Chlorella , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Clorofila A , Clorofila
4.
Aquat Toxicol ; 257: 106441, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848695

RESUMO

Triphenyltin (TPT), a synthetic chemical, is prevalent in complex salinity areas, including estuaries and coastal regions. However, current studies on the toxicological effects of TPT relevant to the environment at different salinities are limited. In the study, biochemical, histological, and transcriptional analyses of TPT and salinity alone, or in combination, was performed on the Nile tilapia (Oreochromis niloticus) liver. Nile tilapia exhibited weakened antioxidant defenses and liver damage. Transcriptomic analysis revealed that TPT exposure primarily affected lipid metabolism and immunity; salinity exposure alone particularly affected carbohydrate metabolism; combined exposure primarily immune- and metabolic-related signaling pathways. In addition, the single exposure to TPT or salinity induced inflammatory responses by up-regulating the expression of pro-inflammatory cytokines, whereas combined exposure suppressed inflammation by down-regulating pro-inflammatory cytokine levels. These findings are beneficial to understand the negative effects of TPT exposure in Nile tilapia in the broad salinity zones and its potential defense mechanisms.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Ciclídeos/fisiologia , Salinidade , Poluentes Químicos da Água/toxicidade , Estresse Fisiológico , Citocinas/genética
5.
Chemosphere ; 313: 137381, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435316

RESUMO

This paper evaluates the coexistence risks of triphenyltin (TPT) and norfloxacin (NOR) to aquatic organisms in the aquatic environment. Carp (Cyprinus carpio) was used as the test organism, the control and exposure groups (1 µg/L TPT), 1 mg/L (NOR), 1 µg/LTPT+1 mg/LNOR (TPT_NOR)) were set up according to the environmental concentration in the severely polluted area for 42 days. The single/combined toxic effects of TPT and NOR on aquatic organisms were evaluated by analyzing carp brain transcriptome sequencing, gut microbiota structure, and detection of biochemical indicators and RT-qPCR. Our results show that TPT and NOR induce lipid metabolism disorder in carp brain tissue, affecting the metabolism of cytochrome P450 to exogenous substances, and NOR also induces immunosuppression in carp. Long-term exposure to TPT combined with NOR amplifies the monotoxicity of TPT or NOR on lipid metabolism and immunosuppression in carp, induces immune dysfunction in brain tissue and changes in gut microbiota structure. However, TPT_NOR has no obvious neurotoxicity on the brain, but it can inhibit the level of intestinal MDA. This highlights that co-exposure of TPT and NOR amplifies metabolic disorders and immunosuppressive functions in carp.


Assuntos
Carpas , Compostos Orgânicos de Estanho , Poluentes Químicos da Água , Animais , Norfloxacino/toxicidade , Compostos Orgânicos de Estanho/toxicidade , Intestinos , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Ecotechnol ; 16: 100266, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37096249

RESUMO

Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (Cyprinus carpio) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L-1 and 1 µg L-1, respectively. The effects of MPs combined with TPT on the carp gut-brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut-brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.

7.
Environ Sci Pollut Res Int ; 29(29): 44513-44522, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35133590

RESUMO

Currently, there is a relatively lack of relevant research on the interference effect of quinolone antibiotics on the endocrine of aquatic animals. In this study, the toxicity of norfloxacin (NOR) on the endocrine system of juvenile common carp (Cyprinus carpio) was evaluated, as well as the hematocyte parameters. Specifically, two important endocrine axes were assessed: the hypothalamus-pituitary-thyroid (HPT) axis and hypothalamus-pituitary-gonadal (HPG) axis. Norfloxacin was used as a representative of quinolone antibiotics. According to the concentration of water pollution areas and considering the bad situation that may be caused by wastewater discharge, a control, 100 ng/L NOR, and 1 mg/L NOR treatment groups were set up. The juvenile carp, as the test animal, was subjected to an exposure experiment for 42 days. Thyroid hormones (T3 and T4) and related genes in HPT axis and sex hormones (11-ketotestosterone [11-KT] and progesterone [PROG]) and related genes in HPG axis and blood count are tested. It was found that the T4 iodine level and conversion process were enhanced after NOR treatment, which in turn led to the increase of T3 content and biological activity in the blood. One hundred nanograms per liter NOR can inhibit the level of sex hormones and inhibit the expression of HPG axis-related genes. In the 1 mg/L NOR treatment group, long-term exposure over a certain concentration range may lead to the development of adaptive mechanisms, making the changes in hormones and related genes insignificant. In conclusion, this study provides reference data for the endocrine interference of quinolone antibiotics on aquatic organisms, and has ecological significance for assessing the health of fish populations of quinolone antibiotics. However, the specific sites and mechanisms of action related to the effects of NOR on the endocrine system remain unclear and require further study.


Assuntos
Carpas , Animais , Antibacterianos/farmacologia , Sistema Endócrino , Hormônios Esteroides Gonadais/metabolismo , Norfloxacino/metabolismo
8.
Aquat Toxicol ; 245: 106118, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176693

RESUMO

Tralopyril is an emerging marine antifouling agent with potential toxic effects on non-target aquatic organisms. To evaluate the toxicity of tralopyril, to turbot (Scophthalmus maximus), we assessed biomarkers, including oxidative stress, neurotoxicity, and osmotic homeostasis regulation enzymes, after a 7-day exposure to tralopyril (5 µg/L, 15 µg/L, 30 µg/L). Superoxide dismutase activity was significantly decreased at 30 µg/L, and Ca2+-Mg2+-ATPase activity in the gills was significantly increased at 15 µg/L and 30 µg/L. No statistically significant differences in the responses of acetylcholinesterase and nitric oxide were detected. In addition, 15 µg/L and 30 µg/L tralopyril induced hyperthyroidism, reflected by significantly increased of T3 levels. The expression levels of hypothalamus-pituitary-thyroid axis-related genes were also upregulated. The molecular docking results showed that the thyroid system disruption was not caused by competitive binding to the receptor. In addition, the integrated biomarker response index showed that 15 µg/L tralopyril had the greatest effect on turbot. In general, tralopyril caused oxidative damage, affected energy metabolism, and interfered with the endocrine system. These findings could provide reference data for assessing the ecological risk of tralopyril in marine environments.


Assuntos
Linguados , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Simulação de Acoplamento Molecular , Pirróis , Poluentes Químicos da Água/toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-35038593

RESUMO

Triphenyltin (TPT) is a representative organotin often used in marine antifouling coatings, herbicides, and pesticides. However, leaching of TPT into water may be toxic to aquatic life. In this study, environmental concentrations of TPT were used to explore reproductive toxicity of TPT to Brachionus plicatilis, a representative marine rotifer. Toxicity was examined at individual, biochemical, and molecular levels and via phenotypic traits. Rotifers exposed to 10 ng/L TPT group showed increased population size, improved reproductive rate, and a higher weekly growth rate. At 100 ng/L TPT group, the greatest degree of oxidative damage was seen. Exposure to 200 ng/L TPT group shorten generation time, delayed reproduction, and obscured the reproductive peak. Expression of the Vasa gene associated with reproduction was increased after exposure to 10 and 200 ng/L TPT group and decreased at 100 ng/L TPT group. High concentrations of TPT reduced rotifer body length and width and slowed swimming speed. Findings provide a better understanding of the adverse effects of changing TPT concentrations on marine rotifer, by the life cycle parameters, oxidative stress defense mechanisms, expression of a gene related to reproduction, and phenotypic traits. This paper firstly analyzed the reproductive toxicity of environmental levels of organotin compounds to zooplankton, which provided new data support for the comprehensive evaluation of its marine ecological toxicity.


Assuntos
Compostos Orgânicos de Estanho , Rotíferos , Poluentes Químicos da Água , Animais , Compostos Orgânicos de Estanho/metabolismo , Compostos Orgânicos de Estanho/toxicidade , Estresse Oxidativo , Reprodução , Poluentes Químicos da Água/metabolismo
10.
Chemosphere ; 289: 133157, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871613

RESUMO

Recently, the toxic effects of tralopyril, as a new antifouling biocide, on aquatic organisms have aroused widespread attention about the potential toxicity. However, the mechanism of tralopyril on marine mollusks has not been elaborated clearly. In this study, the histological, biochemical and molecular impacts of tralopyril on adult Crassostrea gigas were investigated. The results indicated that the 96 h LC50 of tralopyril to adult Crassostrea gigas was 911 µg/L. After exposure to tralopyril (0, 40, 80 and 160 µg/L) for 6 days, the mantle mucus secretion coverage ratio of Crassostrea gigas was increased with a dose-dependent pattern. Catalase (CAT) activity was significantly increased, amylase (AMS) activity, acid phosphatase (ACP) activity and calcium ion (Ca2+) concentration significantly decreased. Meanwhile, integrated biomarker responses (IBR) index suggested that higher concentrations of tralopyril caused severer damage to Crassostrea gigas. In addition, the mRNA expression levels of biomineralization related genes in the mantle were significantly upregulated. Collectively, this study firstly revealed the histological, biochemical and molecular impacts of tralopyril exposure on adult Crassostrea gigas, which provided new insights for understanding the toxicity of tralopyril in marine mollusks.


Assuntos
Crassostrea , Desinfetantes , Animais , Antioxidantes , Crassostrea/genética , Pirróis
11.
Artigo em Inglês | MEDLINE | ID: mdl-35933098

RESUMO

Polystyrene (PS) is one of the most dangerous polymers, mainly because of the mutagenic or carcinogenic risk of the monomers used to produce it. Sea-Nine 211 is a commercial antifouling agent; its active ingredient is the biocide 4,5-dichloro-2-octyl-4-isothiazolinone-3-one (DCOIT). Micro- and nano-plastics have different synergistic effects on marine organisms together with organic pollutants. To understand the toxic effects of DCOIT and PS alone and in combination, marine Chlorella sp was selected as the experimental organism. The exposure concentration of DCOIT was set at 50 µg/L, and that of PS was set at 10 µg/L. The results show that all exposed groups promoted the growth of marine Chlorella sp in the late stage of exposure, and the recovery time of marine Chlorella sp in the exposed group containing PS was earlier. Changing trend of chlorophyll a was consistent with the growth trend. On the 15th day of exposure, the gene expression of the photosynthesis system in the combined exposed group showed a significant difference, and the cells produced oxidative stress. Scanning electron microscope observation shows the algae adhered to each other. The volume of algae cells in DCOIT and PS exposed groups decreased, and the internal structure of algae cells in each exposed group was damaged.


Assuntos
Chlorella , Poluentes Químicos da Água , Clorofila A/farmacologia , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
12.
Environ Pollut ; 313: 120161, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100119

RESUMO

The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 µg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.


Assuntos
Crassostrea , Poluentes Ambientais , Animais , Biomineralização , Carbono/metabolismo , Ciclo do Carbono , Dióxido de Carbono/química , Ecossistema , Poluentes Ambientais/metabolismo , Concentração de Íons de Hidrogênio , Oceanos e Mares , Pirróis , Água do Mar/química
13.
Mar Environ Res ; 180: 105736, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36049432

RESUMO

Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity. In the study, juvenile Nile tilapia (Oreochromis niloticus) were utilized as model animals to investigate the effects of environmental relevant TPT exposure on the osmoregulation and energy metabolism in gill under different salinity. The results showed that salinity and TPT single or combined exposure affected the morphology of the gill tissue. After TPT exposure, Na+-K+-ATPase (NKA) activity significantly decreased at 0 ppt, while NKA and Ca2+-Mg2+-ATPase (CMA) activities significantly increased at 15 ppt. In addition, significantly higher succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities were found in the control fish compared to the TPT-exposed ones at 15 ppt. Quantitative real-time PCR results showed that TPT exposure affected the expression of osmoregulation and energy metabolism-related genes under different salinity. Overall, TPT exposure interfered with osmoregulation and energy metabolism under different salinity. The study will provide reference data for assessing the toxicity of organotin compounds in complex-salinity areas.


Assuntos
Ciclídeos , Compostos Orgânicos de Estanho , Adenosina Trifosfatases/metabolismo , Animais , Ciclídeos/metabolismo , Brânquias/metabolismo , Compostos Orgânicos de Estanho/metabolismo , Compostos Orgânicos de Estanho/toxicidade , Salinidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-35489638

RESUMO

This study aimed to determine the effects of Enrofloxacin (ENR) exposure and depuration on the disruption of thyroid function and growth of juvenile grass carp (Ctenopharyngodon idella) as well as to assess the risk of ENR exposure to human health. Juvenile grass carp were treated with ENR solutions at different concentration gradients for 21 days and then depurated for 14 days. The results indicated ENR accumulation in the juvenile grass carp muscles, which persisted after depuration. In addition, exposure to ENR could alter growth by regulating the expression of genes associated with growth hormone/insulin-like growth factor (GH)/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. During ENR exposure, no significant changes in growth hormone levels were observed; however, a significant increase in the growth hormone level was noted. GH/IGF axis-related genes were upregulated after ENR exposure, and their expression levels remained high after depuration. Notably, a significant increase in the serum triiodothyronine (T3) and thyroxine (T4) levels coincided with the upregulation of HPT axis-related genes in both exposure and depuration treatments, and their expression levels remained high after depuration. Therefore, juvenile grass carp exposure to ENR induces physiological stress through HPT and GH/IGF axes that cannot be recovered after depuration. ENR accumulates in the muscles of juvenile grass carp and may pose a threat to human health. Therefore, exposure of juvenile grass carp to ENR results in impaired thyroid function and impaired growth. In addition, consumption of ENR-exposed fish poses human health risks.


Assuntos
Carpas , Animais , Carpas/metabolismo , Enrofloxacina/toxicidade , Proteínas de Peixes/genética , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Tiroxina , Tri-Iodotironina
15.
Environ Sci Pollut Res Int ; 28(43): 60438-60447, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34537949

RESUMO

Microcosms are used experimentally to simulate ecosystems. This technology has received increasing attention and is widely used for environmental research. This review briefly introduces the origin and development of microcosm theory, summarizes classification and applications of microcosms across decades, and describes the advantages and limitations of microcosm technology in comparison with other methods. Finally, trends in the development of microcosm models are discussed.


Assuntos
Ecossistema
16.
Environ Pollut ; 287: 117612, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146995

RESUMO

Antibiotics are emerging pollutants in our environment. These treatments have been widely used for their low cost, convenient use, and prominent effects. However, the prolonged or excessive use of such drugs can cause toxicity in aquatic organisms. These effects include genotoxicity, metabolic alteration, delayed development and decreased immunity, which carry further risks for ecological systems. In the present study, juvenile common carp (Cyprinus carpio) were exposed to norfloxacin (NOR) for 42 days, with NOR concentrations ranging from 100 ng/L to 1 mg/L, to assess the effects of environmental concentrations of antibiotics, to investigate the effects of NOR on intestinal morphology, enzymatic activity, and transcriptomic levels of RNA in fish, as well as a risk assessment on human health was carried out. The results demonstrated that oxidative stress was induced, the barrier function of the intestine was damaged, and changes occurred in the expression of immune-related genes in fish chronically exposed to antibiotics. Moreover, NOR could affect the regulation of the NF-κB signaling pathway. Thus, environmental concentrations of antibiotics can influence the intestinal health of fish and potentially posing health risks to humans.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Humanos , Intestinos , Norfloxacino/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
17.
Chemosphere ; 283: 131210, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146880

RESUMO

Recently, the residues of quinolones have received widespread attention. However, toxicological studies on aquatic organisms are relatively scarce, especially on the liver metabolism and immune effects of these aquatic organisms. In this study, we investigated the toxic effects of carp exposed to 0, 100 ng/L, and 1 mg/L norfloxacin (NOR) at environmental concentrations for 42 days. In this study, through transcriptomics analysis, we found that some genes involved in lipid metabolism, immune response, and cytochrome P450 metabolism, especially genes accounting for the metabolism-related disorders of glucose and lipid. Defects in these genes and thus their related pathways increase the risk of coming down with nonalcoholic fatty liver disease. Compared to those of the control, results from the biochemical indicators of the treatment group changed significantly, including levels of total cholesterol, triglycerides, glucose, and insulin. Moreover, our results confirmed that NOR at environmental concentrations disordered the metabolism of glucose and lipid in the carp also resulted in hepatocellular and nuclear enlargement. Our results, therefore, confirmed that long-term exposure to NOR can induce carp liver toxicity at histological, biochemical, and transcriptional levels and provided the latest data and theoretical basis for the toxicology study of quinolones in the natural environment.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Poluentes Químicos da Água , Animais , Carpas/genética , Fígado , Norfloxacino/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade
18.
Se Pu ; 37(4): 376-382, 2019 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-30977339

RESUMO

Based on the surface initiated-reversible addition fragmentation chain transfer (SI-RAFT) method, an immobilized metal ion affinity chromatographic material, silica@ploy(N-isopropylacrylamide-co-(aminomethyl)phosphonic acid)-titanium(Ⅳ) (silica@p(NIPAAm-co-AMPA)-Ti4+), was synthesized by the method of rapid introduction of functional groups. The synthesis of the material was confirmed by FT-IR and X-ray photoelectron spectroscopy. The grafting ratio and lower critical solution temperature (LCST) of the material were measured by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the material had excellent temperature-sensitive properties and could successfully capture and release adenosine triphosphate successfully. The service life of the material could be extended by online supplementation of Ti4+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA