RESUMO
Genomic imprinting is a mammalian developmental process that uses epigenetic mechanisms to induce monoallelic and parental-specific expression of particular autosomal genes. A crucial epigenetic event consists of DNA methylation of CpG-islands, which become differentially methylated regions (DMRs) on the maternal and paternal alleles during oogenesis or spermatogenesis (germline DMRs). By contrast, somatic DMRs are acquired after fertilization. While there are several studies referring to methylation acquisition within germline DMRs in the mouse and human, a comparable methylation analysis of orthologous sequences is still lacking in sheep. To identify germline DMRs, this study analysed the methylation status of the available CpG-islands of five ovine imprinted genes (H19, IGF2R, DLK1, DIO3 and BEGAIN) in mature spermatozoa and in female gametes at different stages of their follicle growth, including in vitro matured oocytes. The 5'-end CpG-island of H19 showed a full methylation in spermatozoa and an absent methylation in growing and fully grown oocytes. The intron 2 CpG-island of IGF2R was unmethylated in male gametes, while it showed a high level of methylation in early stages of oogenesis. The promoter CpG-islands of DLK1 and DIO3 were found to be unmethylated both in spermatozoa and oocytes. Finally, the exon 9 CpG-island of BEGAIN was hypermethylated in mature male gametes, while it showed an almost complete methylation only in late stages of oocyte development. Our findings suggest that DNA methylation establishment during early stages of sheep oogenesis and subsequent in vitro maturation is gene-specific and that, of the five genes investigated, only the CpG-islands of H19 and IGF2R might represent ovine germline DMRs.