Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Proteome Res ; 23(8): 2733-2749, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38442041

RESUMO

Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.


Assuntos
Bactérias , Lisina , Processamento de Proteína Pós-Traducional , Proteômica , Proteômica/métodos , Lisina/metabolismo , Acilação , Acetilação , Bactérias/metabolismo , Bactérias/patogenicidade , Bactérias/genética , Espectrometria de Massas/métodos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Virulência
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108725

RESUMO

Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
3.
Proc Natl Acad Sci U S A ; 116(9): 3752-3757, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808761

RESUMO

Nε-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo. Here, we investigate whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we show that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. We screened deletions of the ∼50 putative GNAT domain-encoding genes in B. subtilis for their effects on DNA compaction, and identified five candidates that may encode acetyltransferases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate Hbsu, and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/genética , Lisina Acetiltransferases/genética , Acetilação , Sequência de Aminoácidos/genética , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Lisina/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética
4.
J Proteome Res ; 20(1): 27-37, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32962352

RESUMO

Acetylation was initially discovered as a post-translational modification (PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones in the 1960s. Histone acetylation constitutes part of the "histone code", which regulates chromosome compaction and various DNA processes such as gene expression, recombination, and DNA replication. In bacteria, nucleoid-associated proteins (NAPs) are responsible these functions in that they organize and compact the chromosome and regulate some DNA processes. The highly conserved DNABII family of proteins are considered functional homologues of eukaryotic histones despite having no sequence or structural conservation. Within the past decade, a growing interest in Nε-lysine acetylation led to the discovery that hundreds of bacterial proteins are acetylated with diverse cellular functions, in direct contrast to the original thought that this was a rare phenomenon. Similarly, other previously undiscovered bacterial PTMs, like serine, threonine, and tyrosine phosphorylation, have also been characterized. In this review, the various PTMs that were discovered among DNABII family proteins, specifically histone-like protein (HU) orthologues, from large-scale proteomic studies are discussed. The functional significance of these modifications and the enzymes involved are also addressed. The discovery of novel PTMs on these proteins begs this question: is there a histone-like code in bacteria?


Assuntos
Histonas , Proteômica , Acetilação , Bactérias/genética , Bactérias/metabolismo , Código das Histonas , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
5.
Mol Microbiol ; 108(2): 178-186, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29446505

RESUMO

In Bacillus subtilis, a proteolytic machine composed of MecA, ClpC and ClpP degrades the transcription factor ComK, controlling its accumulation during growth. MecA also inhibits sporulation and biofilm formation by down-regulating spoIIG and sinI, genes that are dependent for their transcription on the phosphorylated protein Spo0A-P. Additionally, MecA has been shown to interact in vitro with Spo0A. Although the inhibitory effect on transcription requires MecA's binding partner ClpC, inhibition is not accompanied by the degradation of Spo0A, pointing to a previously unsuspected regulatory mechanism involving these proteins. Here, we further investigate the MecA and ClpC effects on Spo0A-P-dependent transcription. We show that MecA inhibits the transcription of several Spo0A-P activated genes, but fails to de-repress several Spo0A-P repressed promoters. This demonstrates that MecA and ClpC do not act by preventing the binding of Spo0A-P to its target promoters. Consistent with this, MecA by itself has no effect in vitro on the transcription from PspoIIG while the addition of both MecA and ClpC has a strong inhibitory effect. A complex of MecA and ClpC likely binds to Spo0A-P on its target promoters, preventing the activation of transcription. Thus, components of a degradative machine have been harnessed to directly repress transcription.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/genética , Bacillus subtilis/genética , Proteínas de Choque Térmico/genética , Regiões Promotoras Genéticas , Proteólise , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Mol Microbiol ; 104(5): 837-850, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28295778

RESUMO

During times of environmental insult, Bacillus subtilis undergoes developmental changes leading to biofilm formation, sporulation and competence. Each of these states is regulated in part by the phosphorylated form of the master response regulator Spo0A (Spo0A∼P). The phosphorylation state of Spo0A is controlled by a multi-component phosphorelay. RicA, RicF and RicT (previously YmcA, YlbF and YaaT) have been shown to be important regulatory proteins for multiple developmental fates. These proteins directly interact and form a stable complex, which has been proposed to accelerate the phosphorelay. Indeed, this complex is sufficient to stimulate the rate of phosphotransfer amongst the phosphorelay proteins in vitro. In this study, we demonstrate that two [4Fe-4S]2+ clusters can be assembled on the complex. As with other iron-sulfur cluster-binding proteins, the complex was also found to bind FAD, hinting that these cofactors may be involved in sensing the cellular redox state. This work provides the first comprehensive characterization of an iron-sulfur protein complex that regulates Spo0A∼P levels. Phylogenetic and genetic evidence suggests that the complex plays a broader role beyond stimulation of the phosphorelay.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cisteína/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Oxirredução , Fosforilação , Filogenia , Esporos Bacterianos , Fatores de Transcrição/genética
7.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28439035

RESUMO

Nε-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria.


Assuntos
Acetilação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas , Proteoma/análise
8.
Mol Microbiol ; 101(4): 606-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27501195

RESUMO

Bacillus subtilis can enter three developmental pathways to form spores, biofilms or K-state cells. The K-state confers competence for transformation and antibiotic tolerance. Transition into each of these states requires a stable protein complex formed by YlbF, YmcA and YaaT. We have reported that this complex acts in sporulation by accelerating the phosphorylation of the response regulator Spo0A. Phosphorelay acceleration was also predicted to explain their involvement in biofilm formation and the K-state. This view has been challenged in the case of biofilms, by the suggestion that the three proteins act in association with the mRNA degradation protein RNaseY (Rny) to destabilize the sinR transcript. Here, we reaffirm the roles of the three proteins in supporting the phosphorylation of Spo0A for all three developmental pathways and show that in their absence sinR mRNA is not stabilized. We demonstrate that the three proteins also play unknown Spo0A-P-independent roles in the expression of biofilm matrix and in the production of ComK, the master transcription factor for competence. Finally, we show that domesticated strains of B. subtilis carry a mutation in sigH, which influences the expression kinetics of the early spore gene spoIIG, thereby increasing the penetrance of the ylbF, ymcA and yaaT sporulation phenotypes.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Fatores de Transcrição/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Fosforilação , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 111(4): 1557-61, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474781

RESUMO

RpoS (σ(38)) is required for cell survival under stress conditions, but it can inhibit growth if produced inappropriately and, consequently, its production and activity are elaborately regulated. Crl, a transcriptional activator that does not bind DNA, enhances RpoS activity by stimulating the interaction between RpoS and the core polymerase. The crl gene has two overlapping promoters, a housekeeping, RpoD- (σ(70)) dependent promoter, and an RpoN (σ(54)) promoter that is strongly up-regulated under nitrogen limitation. However, transcription from the RpoN promoter prevents transcription from the RpoD promoter, and the RpoN-dependent transcript lacks a ribosome-binding site. Thus, activation of the RpoN promoter produces a long noncoding RNA that silences crl gene expression simply by being made. This elegant and economical mechanism, which allows a near-instantaneous reduction in Crl synthesis without the need for transacting regulatory factors, restrains the activity of RpoS to allow faster growth under nitrogen-limiting conditions.


Assuntos
Regiões Promotoras Genéticas , Transcrição Gênica , Proteínas de Escherichia coli/genética , Regulação da Expressão Gênica , Nitrogênio/metabolismo , RNA Polimerase Sigma 54/genética , RNA Mensageiro/genética
10.
Mol Microbiol ; 97(3): 454-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899641

RESUMO

The bistably expressed K-state of Bacillus subtilis is characterized by two distinct features; transformability and arrested growth when K-state cells are exposed to fresh medium. The arrest is manifested by a failure to assemble replisomes and by decreased rates of cell growth and rRNA synthesis. These phenotypes are all partially explained by the presence of the AAA(+) protein ComGA, which is also required for the binding of transforming DNA to the cell surface and for the assembly of the transformation pilus that mediates DNA transport. We have discovered that ComGA interacts with RelA and that the ComGA-dependent inhibition of rRNA synthesis is largely bypassed in strains that cannot synthesize the alarmone (p)ppGpp. We propose that the interaction of ComGA with RelA prevents the hydrolysis of (p)ppGpp in K-state cells, which are thus trapped in a non-growing state until ComGA is degraded. We show that some K-state cells exhibit tolerance to antibiotics, a form of type 1 persistence, and we propose that the bistable expression of both transformability and the growth arrest are bet-hedging adaptations that improve fitness in the face of varying environments, such as those presumably encountered by B. subtilis in the soil.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Competência de Transformação por DNA , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligases/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Ribossômico/biossíntese
11.
Mol Microbiol ; 90(6): 1201-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24164455

RESUMO

Transformation in most bacteria is dependent on orthologues of Type 2 secretion and Type 4 pilus system proteins. In each system, pilin proteins (major and minor) are required to make the pilus structure and are essential to the process, although the precise roles of the minor pilins remain unclear. We have explored protein-protein interactions among the competence minor pilins of Bacillus subtilis through in vitro binding studies, immunopurification and mass spectrometry. We demonstrate that the minor pilins directly interact, and the minor pilin ComGG interacts with most of the known proteins required for transformation. We find that ComGG requires other ComG proteins for its stabilization and for processing by the pre-pilin peptidase. These observations, C-terminal mutations in ComGG that prevent processing and the inaccessibility of pre-ComGG to externally added protease suggest a model in which pre-ComGG must be associated with other minor pilins for processing to take place. We propose that ComGG does not become a transmembrane protein until after processing. These behaviours contrast with that of pre-ComGC, the major pilin, which is accessible to externally added protease and requires only the peptidase to be processed. The roles of the pilins and of the pilus in transformation are discussed.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Proteínas de Fímbrias/genética , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estabilidade Proteica , Transformação Bacteriana
12.
Mol Microbiol ; 88(2): 283-300, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23490197

RESUMO

Bacillus subtilis has adopted a bet-hedging strategy to ensure survival in changing environments. From a clonal population, numerous sub-populations can emerge, expressing different sets of genes that govern the developmental processes of sporulation, competence and biofilm formation. The master transcriptional regulator Spo0A controls the entry into all three fates and the production of the phosphorylated active form of Spo0A is precisely regulated via a phosphorelay, involving at least four proteins. Two proteins, YmcA and YlbF were previously shown to play an unidentified role in the regulation of biofilm formation, and in addition, YlbF was shown to regulate competence and sporulation. Using an unbiased proteomics screen, we demonstrate that YmcA and YlbF interact with a third protein, YaaT to form a tripartite complex. We show that all three proteins are required for proper establishment of the three above-mentioned developmental states. We show that the complex regulates the activity of Spo0A in vivo and, using in vitro reconstitution experiments, determine that they stimulate the phosphorelay, probably by interacting with Spo0F and Spo0B. We propose that the YmcA-YlbF-YaaT ternary complex is required to increase Spo0A~P levels above the thresholds needed to induce development.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/fisiologia , Fatores de Transcrição/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Esporos Bacterianos/genética , Fatores de Transcrição/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
13.
ArXiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38495572

RESUMO

The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.

14.
Pharmaceutics ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39065557

RESUMO

Staphylococcus aureus (S. aureus) is an opportunistic pathogen that lives on surfaces and skin and can cause serious infections inside the body. Antimicrobial peptides (AMPs) are part of the innate immune system and can eliminate pathogens, including bacteria and viruses, and are a promising alternative to antibiotics. Although studies have reported that AMP-functionalized hydrogels can prevent bacterial adhesion and biofilm formation, AMP dosing and the combined effects of multiple AMPs are not well understood. Here, three AMPs with different antibacterial properties were synthesized and the soluble minimum inhibitory concentrations (MICs) of each AMP against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were determined. Hydrogels with immobilized AMPs at their MIC (DD13-RIP 27.5 µM; indolicidin 43.8 µM; P10 120 µM) were effective in preventing MRSA adhesion and biofilm formation. Checkerboard AMP screens identified synergy between indolicidin (3.1 µM) and P10 (12.5 µM) based on soluble fractional inhibitory concentration indices (FICIs) against MRSA, and hydrogels formed with these AMPs at half of their synergistic concentrations (total peptide concentration, 7.8 µM) were highly efficacious in killing MRSA. Mammalian cells cultured atop these hydrogels were highly viable, demonstrating that these AMP hydrogels are biocompatible and selectively eradicate bacteria, based on soluble checkerboard-screening data.

15.
Microorganisms ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065123

RESUMO

Infections due to drug-resistant Acinetobacter baumannii strains are increasing and cause significant morbidity and mortality, especially in hospitalized and critically ill patients. A. baumannii rapidly develops resistance to numerous antibiotics, and antibiotics traditionally used against this deadly pathogen have been failing in recent years, highlighting the need to identify new treatment strategies. Treatment options that have shown promise include revisiting common antibiotics not typically used against A. baumannii, evaluating new antibiotics recently introduced to market, and identifying combinations of antibiotics that display synergistic interactions. In this study, we characterized the antibiotic susceptibility profiles of extensively (XDR) and pandrug-resistant (PDR) A. baumannii patient isolates. We examined the potency of 22 standard-of-care antibiotics and the newer antibiotics eravacycline, omadacycline, and plazomicin against these strains. Furthermore, we examined combinations of these antibiotics against our collection to identify synergistic effects. We found that this collection is highly resistant to most or all standard-of-care antibiotics, except for minocycline and rifampin. We show that eravacycline and omadacycline are effective against these strains based on minimum inhibitory concentrations. We also identified two highly effective combinations, cefepime and amikacin and cefepime and ampicillin-sulbactam, which exhibited high rates of synergy against this collection. This information is valuable in our battle against highly drug resistant and virtually untreatable A. baumannii infections.

16.
Front Microbiol ; 15: 1356733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835483

RESUMO

Nε-lysine acetylation is recognized as a prevalent post-translational modification (PTM) that regulates proteins across all three domains of life. In Bacillus subtilis, the histone-like protein HBsu is acetylated at seven sites, which regulates DNA compaction and the process of sporulation. In Mycobacteria, DNA compaction is a survival strategy in response antibiotic exposure. Acetylation of the HBsu ortholog HupB decondenses the chromosome to escape this drug-induced, non-growing state, and in addition, regulates the formation of drug-tolerant subpopulations by altering gene expression. We hypothesized that the acetylation of HBsu plays similar regulatory roles. First, we measured nucleoid area by fluorescence microscopy and in agreement, we found that wild-type cells compacted their nucleoids upon kanamycin exposure, but not exposure to tetracycline. We analyzed a collection of HBsu mutants that contain lysine substitutions that mimic the acetylated (glutamine) or unacetylated (arginine) forms of the protein. Our findings indicate that some level of acetylation is required at K3 for a proper response and K75 must be deacetylated. Next, we performed time-kill assays of wild-type and mutant strains in the presence of different antibiotics and found that interfering with HBsu acetylation led to faster killing rates. Finally, we examined the persistent subpopulation and found that altering the acetylation status of HBsu led to an increase in persister cell formation. In addition, we found that most of the deacetylation-mimic mutants, which have compacted nucleoids, were delayed in resuming growth following removal of the antibiotic, suggesting that acetylation is required to escape the persistent state. Together, this data adds an additional regulatory role for HBsu acetylation and further supports the existence of a histone-like code in bacteria.

17.
ArXiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292469

RESUMO

The genetic information that dictates the structure and function of all life forms is encoded in the DNA. In 1953, Watson and Crick first presented the double helical structure of a DNA molecule. Their findings unearthed the desire to elucidate the exact composition and sequence of DNA molecules. Discoveries and the subsequent development and optimization of techniques that allowed for deciphering the DNA sequence has opened new doors in research, biotech, and healthcare. The application of high-throughput sequencing technologies in these industries has positively impacted and will continue to contribute to the betterment of humanity and the global economy. Improvements, such as the use of radioactive molecules for DNA sequencing to the use of florescent dyes and the implementation of polymerase chain reaction (PCR) for amplification, led to sequencing a few hundred base pairs in days, to automation, where sequencing of thousands of base pairs in hours became possible. Significant advances have been made, but there is still room for improvement. Here, we look at the history and the technology of the currently available high-through put sequencing platforms and the possible applications of such technologies to biomedical research and beyond.

18.
Antibiotics (Basel) ; 11(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625258

RESUMO

Acinetobacter baumannii hospital infections are difficult to treat due to the rapid emergence of multidrug-resistant (MDR) strains. In addition, A. baumannii can survive in numerous adverse environments, including in the presence of common hospital antiseptics. We hypothesized that in addition to accumulating drug resistance determinants, MDR A. baumannii strains also accumulate mutations that allow for greater microbicide tolerance when compared to pan-susceptible (PS) strains. To test this hypothesis, we compared the survival of five MDR and five PS patient isolates when exposed to bleach, ethanol, quaternary ammonium compounds, chlorhexidine gluconate, and povidone. We evaluated bacteria in a free-living planktonic state and under biofilm conditions. Each disinfectant eliminated 99.9% of planktonic bacteria, but this was not the case for bacterial biofilms. Next, we characterized strains for the presence of the known microbicide-resistance genes cepA, qacEΔ1, qacE, and qacA. MDR strains did not survive more than PS strains in the presence of microbicides, but microbicide-resistant strains had higher survival rates under some conditions. Interestingly, the PS strains were more likely to possess microbicide-resistance genes. Microbicide resistance remains an important topic in healthcare and may be independent of antimicrobial resistance. Hospitals should consider stricter isolation precautions that take pan-susceptible strains into account.

19.
Antibiotics (Basel) ; 11(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36289956

RESUMO

For decades, the spread of multidrug-resistant (MDR) Acinetobacter baumannii has been rampant in critically ill, hospitalized patients. Traditional antibiotic therapies against this pathogen have been failing, leading to rising concerns over management options for patients. Two new antibiotics, eravacycline and omadacycline, were introduced to the market and have shown promising results in the treatment of Gram-negative infections. Since these drugs are newly available, there is limited in vitro data about their effectiveness against MDR A. baumannii or even susceptible strains. Here, we examined the effectiveness of 22 standard-of-care antibiotics, eravacycline, and omadacycline against susceptible and extensively drug-resistant (XDR) A. baumannii patient isolates from Cooper University Hospital. Furthermore, we examined selected combinations of eravacycline or omadacycline with other antibiotics against an XDR strain. We demonstrated that this collection of strains is largely resistant to monotherapies of carbapenems, fluoroquinolones, folate pathway antagonists, cephalosporins, and most tetracyclines. While clinical breakpoint data are not available for eravacycline or omadacycline, based on minimum inhibitory concentrations, eravacycline was highly effective against these strains. The aminoglycoside amikacin alone and in combination with eravacycline or omadacycline yielded the most promising results. Our comprehensive characterization offers direction in the treatment of this deadly infection in hospitalized patients.

20.
mSystems ; 6(4): e0042221, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427523

RESUMO

Nε-lysine acetylation is an important, dynamic regulatory posttranslational modification (PTM) that is common in bacteria. Protein acetylomes have been characterized for more than 30 different species, and it is known that acetylation plays important regulatory roles in many essential biological processes. The levels of acetylation are enzymatically controlled by the opposing actions of lysine acetyltransferases and deacetylases. In bacteria, a second mechanism of acetylation exists and occurs via an enzyme-independent manner using the secondary metabolite acetyl-phosphate. Nonenzymatic acetylation accounts for global low levels of acetylation. Recently, studies concerning the role of protein acetylation in bacterial virulence have begun. Acetylated virulence factors have been identified and further characterized. The roles of the enzymes that acetylate and deacetylate proteins in the establishment of infection and biofilm formation have also been investigated. In this review, we discuss the acetylomes of human bacterial pathogens. We highlight examples of known acetylated virulence proteins and examine how they affect survival in the host. Finally, we discuss how acetylation might influence host-pathogen interactions and look at the contribution of acetylation to antimicrobial resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA