Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
N Engl J Med ; 391(7): 598-608, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39141852

RESUMO

BACKGROUND: Patients with brain injury who are unresponsive to commands may perform cognitive tasks that are detected on functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). This phenomenon, known as cognitive motor dissociation, has not been systematically studied in a large cohort of persons with disorders of consciousness. METHODS: In this prospective cohort study conducted at six international centers, we collected clinical, behavioral, and task-based fMRI and EEG data from a convenience sample of 353 adults with disorders of consciousness. We assessed the response to commands on task-based fMRI or EEG in participants without an observable response to verbal commands (i.e., those with a behavioral diagnosis of coma, vegetative state, or minimally conscious state-minus) and in participants with an observable response to verbal commands. The presence or absence of an observable response to commands was assessed with the use of the Coma Recovery Scale-Revised (CRS-R). RESULTS: Data from fMRI only or EEG only were available for 65% of the participants, and data from both fMRI and EEG were available for 35%. The median age of the participants was 37.9 years, the median time between brain injury and assessment with the CRS-R was 7.9 months (25% of the participants were assessed with the CRS-R within 28 days after injury), and brain trauma was an etiologic factor in 50%. We detected cognitive motor dissociation in 60 of the 241 participants (25%) without an observable response to commands, of whom 11 had been assessed with the use of fMRI only, 13 with the use of EEG only, and 36 with the use of both techniques. Cognitive motor dissociation was associated with younger age, longer time since injury, and brain trauma as an etiologic factor. In contrast, responses on task-based fMRI or EEG occurred in 43 of 112 participants (38%) with an observable response to verbal commands. CONCLUSIONS: Approximately one in four participants without an observable response to commands performed a cognitive task on fMRI or EEG as compared with one in three participants with an observable response to commands. (Funded by the James S. McDonnell Foundation and others.).


Assuntos
Transtornos da Consciência , Eletroencefalografia , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Transtornos da Consciência/etiologia , Transtornos da Consciência/fisiopatologia , Cognição/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Idoso , Adulto Jovem , Estado Vegetativo Persistente/fisiopatologia , Estado Vegetativo Persistente/etiologia
2.
Semin Neurol ; 44(3): 271-280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604229

RESUMO

Cognitive motor dissociation (CMD) is characterized by a dissociation between volitional brain responses and motor control, detectable only through techniques such as electroencephalography (EEG) and functional magnetic resonance imaging. Hence, it has recently emerged as a major challenge in the assessment of patients with disorders of consciousness. Specifically, this review focuses on the prognostic implications of CMD detection during the acute stage of brain injury. CMD patients were identified in each diagnostic category (coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state minus) with a relatively similar prevalence of around 20%. Current knowledge tends to indicate that the diagnosis of CMD in the acute phase often predicts a more favorable clinical outcome compared with other unresponsive non-CMD patients. Nevertheless, the review underscores the limited research in this domain, probably at least partially explained by its nascent nature and the lack of uniformity in the nomenclature for CMD-related disorders, hindering the impact of the literature in the field.


Assuntos
Transtornos da Consciência , Humanos , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/fisiopatologia , Transtornos Dissociativos/diagnóstico , Transtornos Dissociativos/fisiopatologia , Prognóstico
3.
Br J Anaesth ; 131(4): 715-725, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596183

RESUMO

BACKGROUND: Cortical excitability is higher in unconsciousness than in wakefulness, but it is unclear how this relates to anaesthesia. We investigated cortical excitability in response to dexmedetomidine, the effects of which are not fully known. METHODS: We recorded transcranial magnetic stimulation (TMS) and EEG in frontal and parietal cortex of 20 healthy subjects undergoing dexmedetomidine sedation in four conditions (baseline, light sedation, deep sedation, recovery). We used the first component (0-30 ms) of the TMS-evoked potential (TEP) to measure cortical excitability (amplitude), slope, and positive and negative peak latencies (collectively, TEP indices). We used generalised linear mixed models to test the effect of condition, brain region, and responsiveness on TEP indices. RESULTS: Compared with baseline, amplitude in the frontal cortex increased by 6.52 µV (P<0.001) in light sedation, 4.55 µV (P=0.003) in deep sedation, and 5.03 µV (P<0.001) in recovery. Amplitude did not change in the parietal cortex. Compared with baseline, slope increased in all conditions (P<0.02) in the frontal but not parietal cortex. The frontal cortex showed 5.73 µV higher amplitude (P<0.001), 0.63 µV ms-1 higher slope (P<0.001), and 2.2 ms shorter negative peak latency (P=0.001) than parietal areas. Interactions between dexmedetomidine and region had effects over amplitude (P=0.004) and slope (P=0.009), with both being higher in light sedation, deep sedation, and recovery compared with baseline. CONCLUSIONS: Transcranial magnetic stimulation-evoked potential amplitude changes non-linearly as a function of depth of sedation by dexmedetomidine, with a region-specific paradoxical increase. Future research should investigate other anaesthetics to elucidate the link between cortical excitability and depth of sedation.


Assuntos
Anestesia , Dexmedetomidina , Humanos , Estimulação Magnética Transcraniana , Dexmedetomidina/farmacologia , Potenciais Evocados , Lobo Frontal
4.
Neurosci Conscious ; 2024(1): niae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881630

RESUMO

Modern medicine has been shaken by the surge of psychedelic science that proposes a new approach to mitigate mental disorders, such as depression and post-traumatic stress disorder. Clinical trials to investigate whether psychedelic substances can treat psychiatric conditions are now underway, yet less discussion gravitates around their use in neurological disorders due to brain injury. One suggested implementation of brain-complexity enhancing psychedelics is to treat people with post-comatose disorders of consciousness (DoC). In this article, we discuss the rationale of this endeavour, examining possible outcomes of such experiments by postulating the existence of an optimal level of complexity. We consider the possible counterintuitive effects of both psychedelics and DoC on the functional connectivity of the default mode network and its possible impact on selfhood. We also elaborate on the role of computational modelling in providing complementary information to experimental studies, both contributing to our understanding of the treatment mechanisms and providing a path towards personalized medicine. Finally, we update the discourse surrounding the ethical considerations, encompassing clinical and scientific values.

5.
PLoS One ; 19(7): e0298110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968195

RESUMO

Neuroimaging studies have suggested an important role for the default mode network (DMN) in disorders of consciousness (DoC). However, the extent to which DMN connectivity can discriminate DoC states-unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)-is less evident. Particularly, it is unclear whether effective DMN connectivity, as measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this extends to UWS patients with potentially "covert" awareness (minimally conscious star, MCS*) indexed by voluntary brain activity in conjunction with partially preserved frontoparietal metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, we tested the classification performance of the DCM models demonstrating that connectivity between medial prefrontal and left parietal sources reliably discriminates UWS PET- from MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* patients as conscious subjects with high posterior probability (pp > .92). These results identify specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-based effective connectivity for identifying patients with potential covert awareness.


Assuntos
Transtornos da Consciência , Estado de Consciência , Eletroencefalografia , Lobo Parietal , Humanos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico por imagem , Estado de Consciência/fisiologia , Tomografia por Emissão de Pósitrons , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Estado Vegetativo Persistente/fisiopatologia , Estado Vegetativo Persistente/diagnóstico por imagem , Estudos de Coortes , Estudos de Casos e Controles , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
6.
Presse Med ; 52(2): 104163, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36796250

RESUMO

Patients with disorders of consciousness (DoC) represent a group of severely brain-injured patients with varying capacities for consciousness in terms of both wakefulness and awareness. The current state-of-the-art for assessing these patients is through standardised behavioural examinations, but inaccuracies are commonplace. Neuroimaging and electrophysiological techniques have revealed vast insights into the relationships between neural alterations, andcognitive and behavioural features of consciousness in patients with DoC. This has led to the establishment of neuroimaging paradigms for the clinical assessment of DoC patients. Here, we review selected neuroimaging findings on the DoC population, outlining key findings of the dysfunction underlying DoC and presenting the current clinical utility of neuroimaging tools. We discuss that whilst individual brain areas play instrumental roles in generating and supporting consciousness, activation of these areas alone is not sufficient for conscious experience. Instead, for consciousness to arise, we need preserved thalamo-cortical circuits, in addition to sufficient connectivity between distinctly differentiated brain networks, underlined by connectivity both within, and between such brain networks. Finally, we present recent advances and future perspectives in computational methodologies applied to DoC, supporting the notion that progress in the science of DoC will be driven by a symbiosis of these data-driven analyses, and theory-driven research. Both perspectives will work in tandem to provide mechanistic insights contextualised within theoretical frameworks which ultimately inform the practice of clinical neurology.

7.
BJA Open ; 8: 100224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37780201

RESUMO

Neuroscientists agree on the value of locating the source of consciousness within the brain. Anaesthesiologists are no exception, and have their own operational definition of consciousness based on phenomenological observations during anaesthesia. The full functional correlates of consciousness are yet to be precisely identified, however rapidly evolving progress in this scientific domain has yielded several theories that attempt to model the generation of consciousness. They have received variable support from experimental observations, including those involving anaesthesia and its ability to reversibly modulate different aspects of consciousness. Aside from the interest in a better understanding of the mechanisms of consciousness, exploring the functional tenets of the phenomenological consciousness states of general anaesthesia has the potential to ultimately improve patient management. It could facilitate the design of specific monitoring devices and approaches, aiming at reliably detecting each of the possible states of consciousness during an anaesthetic procedure, including total absence of mental content (unconsciousness), and internal awareness (sensation of self and internal thoughts) with or without conscious perception of the environment (connected or disconnected consciousness, respectively). Indeed, it must be noted that unresponsiveness is not sufficient to infer absence of connectedness or even absence of consciousness. This narrative review presents the current knowledge in this field from a system-level, underlining the contribution of anaesthesia studies in supporting theories of consciousness, and proposing directions for future research.

8.
Front Neurol ; 14: 1216468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545735

RESUMO

Background: Improving the functional recovery of patients with DoC remains one of the greatest challenges of the field. Different theories exist about the role of the anterior (prefrontal areas) versus posterior (parietal areas) parts of the brain as hotspots for the recovery of consciousness. Repetitive transcranial magnetic stimulation (rTMS) is a powerful non-invasive brain stimulation technique for the treatment of DoC. However, a direct comparison of the effect of TMS treatment on the front versus the back of the brain has yet to be performed. In this study, we aim to assess the short- and long-term effects of frontal and parietal rTMS on DoC recovery and characterize responders phenotypically. Methods/design: Ninety patients with subacute and prolonged DoC will be included in a two-part multicenter prospective study. In the first phase (randomized controlled trial, RCT), patients will undergo four rTMS sessions in a crossover design over 10 days, targeting (i) the left dorsolateral prefrontal cortex (DLPFC) and (ii) the left angular gyrus (AG), as well as (iii & iv) their sham alternatives. In the second phase (longitudinal personalized trial), patients will receive personalized stimulations for 20 working days targeting the brain area that showed the best results in the RCT and will be randomly assigned to either active or sham intervention. The effects of rTMS on neurobehavioral and neurophysiological functioning in patients with DoC will be evaluated using clinical biomarkers of responsiveness (i.e., the Coma Recovery Scale-Revised; CRS-R), and electrophysiological biomarkers (e.g., power spectra, functional and effective connectivity, perturbational complexity index before and after intervention). Functional long-term outcomes will be assessed at 3 and 6 months post-intervention. Adverse events will be recorded during the treatment phase. Discussion: This study seeks to identify which brain region (front or back) is best to stimulate for the treatment of patients with DoC using rTMS, and to characterize the neural correlates of its action regarding recovery of consciousness and functional outcome. In addition, we will define the responders' profile based on patients' characteristics and functional impairments; and develop biomarkers of responsiveness using EEG analysis according to the clinical responsiveness to the treatment. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04401319, Clinicaltrials.gov, n° NCT04401319.

9.
Sci Adv ; 9(24): eadf8332, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315149

RESUMO

To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain's rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs' effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain's functional architecture.


Assuntos
Ketamina , Metilfenidato , Humanos , Encéfalo , Proteínas de Membrana Transportadoras , Modafinila
10.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367909

RESUMO

Modern lifestyle curtails sleep and increases nighttime work and leisure activities. This has a deleterious impact on vigilance and attention, exacerbating chances of committing attentional lapses, with potential dramatic outcomes. Here, we investigated the brain signature of attentional lapses and assessed whether cortical excitability and brain response propagation were modified during lapses and whether these modifications changed with aging. We compared electroencephalogram (EEG) responses to transcranial magnetic stimulation (TMS) during lapse and no-lapse periods while performing a continuous attentional/vigilance task at night, after usual bedtime. Data were collected in healthy younger (N = 12; 18-30 years) and older individuals (N = 12; 50-70 years) of both sexes. The amplitude and slope of the first component of the TMS-evoked potential were larger during lapses. In contrast, TMS response scattering over the cortical surface, as well as EEG response complexity, did not significantly vary between lapse and no-lapse periods. Importantly, despite qualitative differences, age did not significantly affect any of the TMS-EEG measures. These results demonstrate that attentional lapses are associated with a transient increase of cortical excitability. This initial change is not associated with detectable changes in subsequent effective connectivity-as indexed by response propagation-and are not markedly different between younger and older adults. These findings could contribute to develop models aimed to predicting and preventing lapses in real-life situations.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Idoso , Atenção , Potenciais Evocados , Feminino , Humanos , Masculino , Vigília
11.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33290274

RESUMO

BACKGROUNDNeuronal hyperexcitability characterizes the early stages of Alzheimer's disease (AD). In animals, early misfolded tau and amyloid-ß (Aß) protein accumulation - both central to AD neuropathology - promote cortical excitability and neuronal network dysfunction. In healthy humans, misfolded tau and Aß aggregates are first detected, respectively, in the brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD cognitive symptoms. Whether cortical excitability is related to early brainstem tau - and its associated neuroinflammation - and cortical Aß aggregations remains unknown.METHODSWe probed frontal cortex excitability, using transcranial magnetic stimulation combined with electroencephalography, in a sample of 64 healthy late-middle-aged individuals (50-69 years; 45 women and 19 men). We assessed whole-brain [18F]THK5351 PET uptake as a proxy measure of tau/neuroinflammation, and we assessed whole-brain Aß burden with [18F]Flutemetamol or [18F]Florbetapir radiotracers.RESULTSWe found that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment was associated with increased cortical excitability (r = 0.29, P = 0.02). By contrast, [18F]THK5351 PET signal in the hippocampal formation, although strongly correlated with brainstem signal in whole-brain voxel-based quantification analyses (P value corrected for family-wise error [PFWE-corrected] < 0.001), was not significantly associated with cortical excitability (r = 0.14, P = 0.25). Importantly, no significant association was found between early Aß cortical deposits and cortical excitability (r = -0.20, P = 0.11).CONCLUSIONThese findings reveal potential brain substrates for increased cortical excitability in preclinical AD and may constitute functional in vivo correlates of early brainstem tau accumulation and neuroinflammation in humans.TRIAL REGISTRATIONEudraCT 2016-001436-35.FUNDINGF.R.S.-FNRS Belgium, Wallonie-Bruxelles International, ULiège, Fondation Simone et Pierre Clerdent, European Regional Development Fund.


Assuntos
Aminopiridinas/farmacocinética , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/metabolismo , Córtex Cerebral/fisiopatologia , Envelhecimento Saudável/metabolismo , Quinolinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/patologia , Estudos Transversais , Diagnóstico Precoce , Eletroencefalografia , Feminino , Radioisótopos de Flúor/farmacocinética , Neuroimagem Funcional , Envelhecimento Saudável/patologia , Envelhecimento Saudável/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Estimulação Magnética Transcraniana , Proteínas tau/metabolismo
12.
Transl Psychiatry ; 11(1): 67, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479211

RESUMO

The SARS-CoV-2 pandemic is not only a threat to physical health but is also having severe impacts on mental health. Although increases in stress-related symptomatology and other adverse psycho-social outcomes, as well as their most important risk factors have been described, hardly anything is known about potential protective factors. Resilience refers to the maintenance of mental health despite adversity. To gain mechanistic insights about the relationship between described psycho-social resilience factors and resilience specifically in the current crisis, we assessed resilience factors, exposure to Corona crisis-specific and general stressors, as well as internalizing symptoms in a cross-sectional online survey conducted in 24 languages during the most intense phase of the lockdown in Europe (22 March to 19 April) in a convenience sample of N = 15,970 adults. Resilience, as an outcome, was conceptualized as good mental health despite stressor exposure and measured as the inverse residual between actual and predicted symptom total score. Preregistered hypotheses (osf.io/r6btn) were tested with multiple regression models and mediation analyses. Results confirmed our primary hypothesis that positive appraisal style (PAS) is positively associated with resilience (p < 0.0001). The resilience factor PAS also partly mediated the positive association between perceived social support and resilience, and its association with resilience was in turn partly mediated by the ability to easily recover from stress (both p < 0.0001). In comparison with other resilience factors, good stress response recovery and positive appraisal specifically of the consequences of the Corona crisis were the strongest factors. Preregistered exploratory subgroup analyses (osf.io/thka9) showed that all tested resilience factors generalize across major socio-demographic categories. This research identifies modifiable protective factors that can be targeted by public mental health efforts in this and in future pandemics.


Assuntos
COVID-19/psicologia , Saúde Mental , Resiliência Psicológica , Fatores Sociais , Estresse Psicológico/prevenção & controle , Adulto , COVID-19/prevenção & controle , Estudos Transversais , Transmissão de Doença Infecciosa/prevenção & controle , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fatores de Proteção , Análise de Regressão , Apoio Social , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA