Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 117(1): 17, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357563

RESUMO

Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.


Assuntos
Núcleo Celular , Miocárdio , Animais , Expressão Gênica , Mamíferos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(26): 13122-13130, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31152133

RESUMO

Iron deficiency augments hypoxic pulmonary arterial pressure in healthy individuals and exacerbates pulmonary arterial hypertension (PAH) in patients, even without anemia. Conversely, iron supplementation has been shown to be beneficial in both settings. The mechanisms underlying the effects of iron availability are not known, due to lack of understanding of how cells of the pulmonary vasculature respond to changes in iron levels. The iron export protein ferroportin (FPN) and its antagonist peptide hepcidin control systemic iron levels by regulating release from the gut and spleen, the sites of absorption and recycling, respectively. We found FPN to be present in pulmonary arterial smooth muscle cells (PASMCs) and regulated by hepcidin cell autonomously. To interrogate the importance of this regulation, we generated mice with smooth muscle-specific knock in of the hepcidin-resistant isoform fpn C326Y. While retaining normal systemic iron levels, this model developed PAH and right heart failure as a consequence of intracellular iron deficiency and increased expression of the vasoconstrictor endothelin-1 (ET-1) within PASMCs. PAH was prevented and reversed by i.v. iron and by the ET receptor antagonist BQ-123. The regulation of ET-1 by iron was also demonstrated in healthy humans exposed to hypoxia and in PASMCs from PAH patients with mutations in bone morphogenetic protein receptor type II. Such mutations were further associated with dysregulation of the HAMP/FPN axis in PASMCs. This study presents evidence that intracellular iron deficiency specifically within PASMCs alters pulmonary vascular function. It offers a mechanistic underpinning for the known effects of iron availability in humans.


Assuntos
Deficiências de Ferro , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/etiologia , Artéria Pulmonar/patologia , Administração Intravenosa , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Antagonistas do Receptor de Endotelina A/administração & dosagem , Endotelina-1/metabolismo , Técnicas de Introdução de Genes , Hepcidinas/metabolismo , Humanos , Ferro/administração & dosagem , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/prevenção & controle , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Receptor de Endotelina A/metabolismo , Regulação para Cima
3.
Nature ; 522(7554): 62-7, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25992544

RESUMO

The lymphatic vasculature is a blind-ended network crucial for tissue-fluid homeostasis, immune surveillance and lipid absorption from the gut. Recent evidence has proposed an entirely venous-derived mammalian lymphatic system. By contrast, here we show that cardiac lymphatic vessels in mice have a heterogeneous cellular origin, whereby formation of at least part of the cardiac lymphatic network is independent of sprouting from veins. Multiple Cre­lox-based lineage tracing revealed a potential contribution from the putative haemogenic endothelium during development, and discrete lymphatic endothelial progenitor populations were confirmed by conditional knockout of Prox1 in Tie2+ and Vav1+ compartments. In the adult heart, myocardial infarction promoted a significant lymphangiogenic response, which was augmented by treatment with VEGF-C, resulting in improved cardiac function. These data prompt the re-evaluation of a century-long debate on the origin of lymphatic vessels and suggest that lymphangiogenesis may represent a therapeutic target to promote cardiac repair following injury.


Assuntos
Linfangiogênese , Vasos Linfáticos/citologia , Vasos Linfáticos/lesões , Miocárdio/citologia , Animais , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Coração/fisiologia , Coração/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Análise Espaço-Temporal , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Veias/citologia , Saco Vitelino/citologia
4.
Circ Res ; 122(8): 1084-1093, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440071

RESUMO

RATIONALE: Current cardiovascular clinical imaging techniques offer only limited assessment of innate immune cell-driven inflammation, which is a potential therapeutic target in myocardial infarction (MI) and other diseases. Hyperpolarized magnetic resonance (MR) is an emerging imaging technology that generates contrast agents with 10- to 20 000-fold improvements in MR signal, enabling cardiac metabolite mapping. OBJECTIVE: To determine whether hyperpolarized MR using [1-13C]pyruvate can assess the local cardiac inflammatory response after MI. METHODS AND RESULTS: We performed hyperpolarized [1-13C]pyruvate MR studies in small and large animal models of MI and in macrophage-like cell lines and measured the resulting [1-13C]lactate signals. MI caused intense [1-13C]lactate signal in healing myocardial segments at both day 3 and 7 after rodent MI, which was normalized at both time points after monocyte/macrophage depletion. A near-identical [1-13C]lactate signature was also seen at day 7 after experimental MI in pigs. Hyperpolarized [1-13C]pyruvate MR spectroscopy in macrophage-like cell suspensions demonstrated that macrophage activation and polarization with lipopolysaccharide almost doubled hyperpolarized lactate label flux rates in vitro; blockade of glycolysis with 2-deoxyglucose in activated cells normalized lactate label flux rates and markedly inhibited the production of key proinflammatory cytokines. Systemic administration of 2-deoxyglucose after rodent MI normalized the hyperpolarized [1-13C]lactate signal in healing myocardial segments at day 3 and also caused dose-dependent improvement in IL (interleukin)-1ß expression in infarct tissue without impairing the production of key reparative cytokines. Cine MRI demonstrated improvements in systolic function in 2-DG (2-deoxyglucose)-treated rats at 3 months. CONCLUSIONS: Hyperpolarized MR using [1-13C]pyruvate provides a novel method for the assessment of innate immune cell-driven inflammation in the heart after MI, with broad potential applicability across other cardiovascular disease states and suitability for early clinical translation.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Miocardite/diagnóstico por imagem , Animais , Isótopos de Carbono/análise , Técnicas de Imagem de Sincronização Cardíaca , Meios de Contraste , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Feminino , Glicólise/efeitos dos fármacos , Ácido Láctico/análise , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imagem Cinética por Ressonância Magnética/métodos , Camundongos , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Miocardite/imunologia , Miocardite/metabolismo , Miocárdio/imunologia , Miocárdio/metabolismo , Ácido Pirúvico/análise , Células RAW 264.7 , Ratos , Ratos Wistar , Suínos
5.
Nanomedicine ; 18: 391-401, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30448526

RESUMO

Herein, we maximize the labeling efficiency of cardiac progenitor cells (CPCs) using perfluorocarbon nanoparticles (PFCE-NP) and 19F MRI detectability, determine the temporal dynamics of single-cell label uptake, quantify the temporal viability/fluorescence persistence of labeled CPCs in vitro, and implement in vivo, murine cardiac CPC MRI/tracking that could be translatable to humans. FuGENEHD-mediated CPC PFCE-NP uptake is confirmed with flow cytometry/confocal microscopy. Epifluorescence imaging assessed temporal viability/fluorescence (up to 7 days [D]). Nonlocalized murine 19F MRS and cardiac MRI studied label localization in terminal/longitudinal tracking studies at 9.4 T (D1-D8). A 4-8 fold 19F concentration increase is evidenced in CPCs for FuGENE vs. directly labeled cells. Cardiac 19F signals post-CPC injections diminished in vivo to ~31% of their values on D1 by D7/D8. Histology confirmed CPC retention, dispersion, and macrophage-induced infiltration. Intra-cardiac injections of PFCE-NP-labeled CPCs with FuGENE can be visualized/tracked in vivo for the first time with 19F MRI.


Assuntos
Rastreamento de Células , Endocitose , Flúor/química , Fluorocarbonos/metabolismo , Imageamento por Ressonância Magnética , Miocárdio/citologia , Nanopartículas/química , Células-Tronco/metabolismo , Animais , Sobrevivência Celular , Feminino , Fluorescência , Camundongos Endogâmicos C57BL , Razão Sinal-Ruído , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 112(10): 3164-9, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713362

RESUMO

Iron is essential to the cell. Both iron deficiency and overload impinge negatively on cardiac health. Thus, effective iron homeostasis is important for cardiac function. Ferroportin (FPN), the only known mammalian iron-exporting protein, plays an essential role in iron homeostasis at the systemic level. It increases systemic iron availability by releasing iron from the cells of the duodenum, spleen, and liver, the sites of iron absorption, recycling, and storage respectively. However, FPN is also found in tissues with no known role in systemic iron handling, such as the heart, where its function remains unknown. To explore this function, we generated mice with a cardiomyocyte-specific deletion of Fpn. We show that these animals have severely impaired cardiac function, with a median survival of 22 wk, despite otherwise unaltered systemic iron status. We then compared their phenotype with that of ubiquitous hepcidin knockouts, a recognized model of the iron-loading disease hemochromatosis. The phenotype of the hepcidin knockouts was far milder, with normal survival up to 12 mo, despite far greater iron loading in the hearts. Histological examination demonstrated that, although cardiac iron accumulates within the cardiomyocytes of Fpn knockouts, it accumulates predominantly in other cell types in the hepcidin knockouts. We conclude, first, that cardiomyocyte FPN is essential for intracellular iron homeostasis and, second, that the site of deposition of iron within the heart determines the severity with which it affects cardiac function. Both findings have significant implications for the assessment and treatment of cardiac complications of iron dysregulation.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Coração/fisiologia , Homeostase , Ferro/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Proc Natl Acad Sci U S A ; 112(9): E973-81, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691752

RESUMO

Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.


Assuntos
Arritmias Cardíacas , Cardiomiopatia Hipertrófica Familiar , Morte Súbita , Desmossomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Repressoras , Substituição de Aminoácidos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Bovinos , Linhagem Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Desmossomos/patologia , Modelos Animais de Doenças , Feminino , Humanos , Filamentos Intermediários , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
8.
J Magn Reson Imaging ; 45(6): 1659-1667, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27990708

RESUMO

PURPOSE: To assess the uptake, accumulation, temporal stability, and spatial localization of isoflurane (ISO) in the C57BL/6 mouse, and to identify its potential interference with the detection of labeled cardiac progenitor cells using 19 F MRI/MR spectroscopy (MRS). MATERIALS AND METHODS: Objectives are demonstrated using (a) in vitro ISO tests, (b) in vivo temporal accumulation/spatial localization C57BL/6 studies (n = 3), and (c) through injections of perfluoro-crown-ether (PFCE) labeled cardiac progenitor cells into femoral muscle areas of the murine hindlimb post-mortem (n = 1) using 1 H/19 F MRI/MRS at 9.4 Tesla. Data were acquired using double-gated spoiled gradient echo images and pulse-acquire spectra. For the in vivo study, the temporal stability of ISO resonances was quantified using coefficient of variability (CV) (5 min) estimates. RESULTS: Two ISO resonances were observed in vivo that correspond to the -CF3 and -OCHF2 moieties. CV values ranged between 3.2 and 6.4% (-CF3 ) and 6.4 and 11.2% (-OCHF2 ). Reductions of the ISO dose (2.0 to 1.7%) at 80 min postinduction had insignificant effects on ISO signals (P = 0.23; P = 0.71). PFCE-labeled cells exhibited a resonance at -16.25 ppm in vitro that did not overlap with the ISO resonances, a finding that is confirmed with MRS post-mortem using injected, labeled cells. Based on 19 F MRI, similar in vivo/post-mortem ISO compartmentalization was also confirmed in peripheral and thoracic skeletal muscles. CONCLUSION: Significant ISO accumulation was observed by 19 F MRS in vivo with temporally stable signals over 90 min postinduction. ISO effects on PFCE labels are anticipated to be minimal but may be more prominent for perfluoropolyether or perfluorooctyl bromide labels. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;45:1659-1667.


Assuntos
Artefatos , Rastreamento de Células/métodos , Éteres/farmacocinética , Fluorocarbonos/farmacocinética , Isoflurano/farmacocinética , Imageamento por Ressonância Magnética , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Células Cultivadas , Meios de Contraste , Radioisótopos de Flúor/farmacocinética , Isoflurano/farmacologia , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Células-Tronco/efeitos dos fármacos , Distribuição Tecidual
9.
FASEB J ; 30(8): 2684-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27103577

RESUMO

The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using (31)P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [(3)H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα(-/-)) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.-Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijevic, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury.


Assuntos
Adaptação Fisiológica , Gorduras na Dieta/efeitos adversos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Consumo de Oxigênio/fisiologia , PPAR alfa/metabolismo , Ração Animal/análise , Animais , Linhagem Celular , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/fisiologia , Coração/fisiologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , PPAR alfa/genética
10.
Artif Organs ; 41(8): 778-784, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27925237

RESUMO

Decellularization offers great potential to the field of tissue engineering, as this method gives rise to scaffold material with the native organ architecture by removing all cellular material and leaving much of the extracellular matrix (ECM) intact. However, many parameters may affect decellularization efficacy and ECM retention and, therefore, decellularization protocols need to be optimized for specific needs. This requires robust methods for comparison of decellularized tissue composition. Various representation methods are used in literature to express tissue composition (DNA, glycosaminoglycans, collagen, other ECM proteins, and growth factors). Here, we present and compare the various methods used and demonstrate that normalization to either dry or wet decellularized weight might be misleading and may overestimate true component retention. Moreover, the magnitude of the confounding effect is likely to be decellularization treatment dependent. As a result, we propose alternative comparison strategies: normalization to whole organ or to a unit of whole initial organ weight. We believe proper assessment of decellularized tissue composition is paramount for the successful comparison of different decellularization protocols and clinical translation.


Assuntos
Matriz Extracelular/química , Miocárdio/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Colágeno/análise , DNA/análise , Matriz Extracelular/ultraestrutura , Glicosaminoglicanos/análise , Masculino , Miocárdio/citologia , Miocárdio/ultraestrutura , Ratos Sprague-Dawley , Engenharia Tecidual/normas , Água/análise
11.
J Physiol ; 594(2): 307-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26574233

RESUMO

KEY POINTS: Adaptation to hypoxia makes the heart more oxygen efficient, by metabolising more glucose. In contrast, type 2 diabetes makes the heart metabolise more fatty acids. Diabetes increases the chances of the heart being exposed to hypoxia, but whether the diabetic heart can adapt and respond is unknown. In this study we show that diabetic hearts retain the ability to adapt their metabolism in response to hypoxia, with functional hypoxia signalling pathways. However, the hypoxia-induced changes in metabolism are additive to abnormal baseline metabolism, resulting in hypoxic diabetic hearts metabolising more fat and less glucose than controls. This stops the diabetic heart being able to recover its function when stressed. These results demonstrate that the diabetic heart retains metabolic flexibility to adapt to hypoxia, but is hindered by the baseline effects of the disease. This increases our understanding of how the diabetic heart is affected by hypoxia-associated complications of the disease. ABSTRACT: Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress.


Assuntos
Adaptação Fisiológica , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Animais , Hipóxia Celular , Glicogênio/metabolismo , Glicólise , Ácido Láctico/metabolismo , Masculino , Mitocôndrias Musculares/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
12.
Magn Reson Med ; 71(5): 1663-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23798473

RESUMO

PURPOSE: Butyrate, a short chain fatty acid, was studied as a novel hyperpolarized substrate for use in dynamic nuclear polarization enhanced magnetic resonance spectroscopy experiments, to define the pathways of short chain fatty acid and ketone body metabolism in real time. METHODS: Butyrate was polarized via the dynamic nuclear polarization process and subsequently dissolved to generate an injectable metabolic substrate. Metabolism was initially assessed in the isolated perfused rat heart, followed by evaluation in the in vivo rat heart. RESULTS: Hyperpolarized butyrate was generated with a polarization level of 7% and was shown to have a T1 relaxation time of 20 s. These physical characteristics were sufficient to enable assessment of multiple steps in its metabolism, with the ketone body acetoacetate and several tricarboxylic acid cycle intermediates observed both in vitro and in vivo. Metabolite to butyrate ratios of 0.1-0.4% and 0.5-2% were observed in vitro and in vivo respectively, similar to levels previously observed with hyperpolarized [2-(13) C]pyruvate. CONCLUSIONS: In this study, butyrate has been demonstrated to be a suitable hyperpolarized substrate capable of revealing multi-step metabolism in dynamic nuclear polarization experiments and providing information on the metabolism of fatty acids not currently achievable with other hyperpolarized substrates.


Assuntos
Butiratos/farmacocinética , Ácidos Graxos Voláteis/metabolismo , Técnicas de Sonda Molecular , Miocárdio/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Isótopos de Carbono/farmacocinética , Técnicas In Vitro , Marcação por Isótopo , Masculino , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Distribuição Tecidual
13.
Atherosclerosis ; : 118599, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39307613

RESUMO

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα) is crucial for regulating cardiac ß-oxidation in the heart, liver, and kidney. Ageing can induce cardiac metabolic alterations, but the role of PPARα has not been extensively characterised. The aim of this research was to investigate the role of PPARα in the aged heart. METHODS: Hyperpolarized [1-13C]pyruvate was used to evaluate in vivo cardiac carbohydrate metabolism in fed and fasted young (3 months) and old (20-22 months) PPARα knockout (KO) mice versus controls. Cine MRI assessed cardiac structural and functional changes. Cardiac tissue analysis included qRT-PCR and Western blotting for Pparα, medium chain acyl-CoA dehydrenase (MCAD), uncoupling protein (UCP) 3, glucose transporter (GLUT) 4 and PDH kinase (PDK) 1,2, and 4 expression. RESULTS: PPARα-KO hearts from both young and old mice showed significantly reduced Pparα mRNA and a 58-59 % decrease in MCAD protein levels compared to controls. Cardiac PDH flux was similar in young control and PPARα-KO mice but 96 % higher in old PPARα-KO mice. Differences between genotypes were consistent in fed and fasted states, with reduced PDH flux when fasted. Increased PDH flux was accompanied by a 179 % rise in myocardial GLUT4 protein. No differences in PDK 1, 2, or 4 protein levels were observed between fed groups, indicating the increased PDH flux in aged PPARα-KO mice was not due to changes in PDH phosphorylation. CONCLUSIONS: Aged PPARα-KO mice demonstrated higher cardiac PDH flux compared to controls, facilitated by increased myocardial GLUT4 protein levels, leading to enhanced glucose uptake and glycolysis.

14.
Cardiovasc Diabetol ; 12: 136, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24063408

RESUMO

BACKGROUND: To study the pathogenesis of diabetic cardiomyopathy, reliable animal models of type 2 diabetes are required. Physiologically relevant rodent models are needed, which not only replicate the human pathology but also mimic the disease process. Here we characterised cardiac metabolic abnormalities, and investigated the optimal experimental approach for inducing disease, in a new model of type 2 diabetes. METHODS AND RESULTS: Male Wistar rats were fed a high-fat diet for three weeks, with a single intraperitoneal injection of low dose streptozotocin (STZ) after fourteen days at 15, 20, 25 or 30 mg/kg body weight. Compared with chow-fed or high-fat diet fed control rats, a high-fat diet in combination with doses of 15-25 mg/kg STZ did not change insulin concentrations and rats maintained body weight. In contrast, 30 mg/kg STZ induced hypoinsulinaemia, hyperketonaemia and weight loss. There was a dose-dependent increase in blood glucose and plasma lipids with increasing concentrations of STZ. Cardiac and hepatic triglycerides were increased by all doses of STZ, in contrast, cardiac glycogen concentrations increased in a dose-dependent manner with increasing STZ concentrations. Cardiac glucose transporter 4 protein levels were decreased, whereas fatty acid metabolism-regulated proteins, including uncoupling protein 3 and pyruvate dehydrogenase (PDH) kinase 4, were increased with increasing doses of STZ. Cardiac PDH activity displayed a dose-dependent relationship between enzyme activity and STZ concentration. Cardiac insulin-stimulated glycolytic rates were decreased by 17% in 15 mg/kg STZ high-fat fed diabetic rats compared with control rats, with no effect on cardiac contractile function. CONCLUSIONS: High-fat feeding in combination with a low dose of STZ induced cardiac metabolic changes that mirror the decrease in glucose metabolism and increase in fat metabolism in diabetic patients. While low doses of 15-25 mg/kg STZ induced a type 2 diabetic phenotype, higher doses more closely recapitulated type 1 diabetes, demonstrating that the severity of diabetes can be modified according to the requirements of the study.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Miocárdio/metabolismo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/etiologia , Glicogênio/metabolismo , Glicólise , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Miocárdio/enzimologia , Fenótipo , Ratos , Ratos Wistar , Fatores de Tempo
15.
NMR Biomed ; 26(11): 1441-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23775685

RESUMO

Hyperpolarised (13)C MRI can be used to generate metabolic images of the heart in vivo. However, there have been no similar studies performed in the isolated perfused heart. Therefore, the aim of this study was to develop a method for the creation of (13)C metabolite maps of the perfused rat heart and to demonstrate the technique in a study of acute and chronic myocardial infarction. Male Wistar rat hearts were isolated, perfused and imaged before and after occlusion of the left anterior descending (LAD) coronary artery, creating an acute infarct group. In addition, a chronic infarct group was generated from hearts which had their LAD coronary artery occluded in vivo. Four weeks later, hearts were excised, perfused and imaged to generate metabolic maps of infused pyruvate and its metabolites lactate and bicarbonate. Myocardial perfusion and energetics were assessed by first-pass perfusion imaging and (31)P MRS, respectively. In both acute and chronically infarcted hearts, perfusion was reduced to the infarct region, as revealed by reduced gadolinium influx and lower signal intensity in the hyperpolarised pyruvate images. In the acute infarct region, there were significant alterations in the lactate (increased) and bicarbonate (decreased) signal ratios. In the chronically infarcted region, there was a significant reduction in both bicarbonate and lactate signals. (31)P-derived energetics revealed a significant decrease between control and chronic infarcted hearts. Significant decreases in contractile function between control and both acute and chronic infracted hearts were also seen. In conclusion, we have demonstrated that hyperpolarised pyruvate can detect reduced perfusion in the rat heart following both acute and chronic infarction. Changes in lactate and bicarbonate ratios indicate increased anaerobic metabolism in the acute infarct, which is not observed in the chronic infarct. Thus, this study has successfully demonstrated a novel imaging approach to assess altered metabolism in the isolated perfused rat heart.


Assuntos
Coração/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Metabolômica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Perfusão , Ácido Pirúvico/metabolismo , Animais , Bicarbonatos/metabolismo , Isótopos de Carbono , Modelos Animais de Doenças , Metabolismo Energético , Técnicas In Vitro , Lactatos/metabolismo , Masculino , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Wistar , Processamento de Sinais Assistido por Computador
16.
Mol Biol Rep ; 39(4): 4857-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22065248

RESUMO

Infarction irreversibly damages the heart, with formation of an akinetic scar that may lead to heart failure. Endogenous cardiac stem cells (CSCs) are a promising candidate cell source for restoring lost tissue and thereby preventing heart failure. CSCs may be isolated in vitro, via the formation of cardiospheres, to give cardiosphere-derived cells (CDCs). Although qRT-PCR analyses of CDCs have been performed, no justification for the selection of the housekeeping gene has been published. Here, we evaluated the most suitable housekeeping gene for RNA expression analysis in CDCs cultured under normoxia, hypoxia or with prolyl-4-hydroxylase inhibitors (PHDIs), from both neonatal and adult rats, to determine the effects of ageing and different culture conditions on the stability of the housekeeping gene for CDCs. Six candidate housekeeping genes, [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin (Actb), hypoxanthine phosphoribosyltransferase 1 (HPRT-1), beta-2-microtubulin (ß2M), 60S acidic ribosomal protein large P1 (RPLP-1) and TATA box binding protein (Tbp)] were evaluated in this study. Analysis using geNorm and NormFinder revealed that GAPDH was the most constant housekeeping gene among all genes tested under normoxia for both neonatal and adult CDCs, whereas Actb was the most stable housekeeping gene under hypoxia. For the PHDI-treated CDCs, overall, GADPH, Actb and ß2M were more consistently expressed, whereas HPRT-1, RPLP-1 and Tbp showed unstable expression. The ranking for ß2M, HPRT-1 and RPLP-1 stability was different for neonatal and adult cells, indicating that expression of these genes was age-dependent. Lastly, independent of age or culture conditions, Tbp was the least stable housekeeping gene. In conclusion, a combination of Actb and GADPH gave the most reliable normalization for comparative analyses of gene transcription in neonatal and adult rat CDCs preconditioned by hypoxia or PHDIs.


Assuntos
Inibidores Enzimáticos/farmacologia , Genes Essenciais/genética , Miocárdio/citologia , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Esferoides Celulares/citologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Western Blotting , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Primers do DNA/metabolismo , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Software , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
17.
Metabolites ; 12(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36144236

RESUMO

Diabetes is a global epidemic, with cardiovascular disease being the leading cause of death in diabetic patients. There is a pressing need for an in vitro model to aid understanding of the mechanisms driving diabetic heart disease, and to provide an accurate, reliable tool for drug testing. Human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have potential as a disease modelling tool. There are several factors that drive molecular changes inside cardiomyocytes contributing to diabetic cardiomyopathy, including hyperglycaemia, lipotoxicity and hyperinsulinemia. Here we discuss these factors and how they can be seen in animal models and utilised in cell culture to mimic the diabetic heart. The use of human iPSC-CMs will allow for a greater understanding of disease pathogenesis and open up new avenues for drug testing.

18.
J Cardiovasc Magn Reson ; 13: 38, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21812990

RESUMO

BACKGROUND: In humans, dynamic contrast CMR of the first pass of a bolus infusion of Gadolinium-based contrast agent has become a standard technique to identify under-perfused regions of the heart and can accurately demonstrate the severity of myocardial infarction. Despite the clinical importance of this method, it has rarely been applied in small animal models of cardiac disease. In order to identify perfusion delays in the infarcted rat heart, here we present a method in which a T1 weighted MR image has been acquired during each cardiac cycle. METHODS AND RESULTS: In isolated perfused rat hearts, contrast agent infusion gave uniform signal enhancement throughout the myocardium. Occlusion of the left anterior descending coronary artery significantly reduced the rate of signal enhancement in anterior regions of the heart, demonstrating that the first-pass method was sensitive to perfusion deficits. In vivo measurements of myocardial morphology, function, perfusion and viability were made at 2 and 8 days after infarction. Morphology and function were further assessed using cine-MRI at 42 days. The perfusion delay was larger in rat hearts that went on to develop greater functional impairment, demonstrating that first-pass CMR can be used as an early indicator of infarct severity. First-pass CMR at 2 and 8 days following infarction better predicted outcome than cardiac ejection fraction, end diastolic volume or end systolic volume. CONCLUSION: First-pass CMR provides a predictive measure of the severity of myocardial impairment caused by infarction in a rodent model of heart failure.


Assuntos
Insuficiência Cardíaca/diagnóstico , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Miocárdio/patologia , Função Ventricular Esquerda , Animais , Meios de Contraste , Modelos Animais de Doenças , Feminino , Gadolínio DTPA , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Perfusão , Valor Preditivo dos Testes , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Volume Sistólico , Fatores de Tempo
19.
Stem Cell Res ; 54: 102422, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118565

RESUMO

Cardiosphere-derived cells (CDCs) can be expanded in vitro and induced to differentiate along the cardiac lineage. To recapitulate the phenotype of an adult cardiomyocyte, differentiating progenitors need to upregulate mitochondrial glucose and fatty acid oxidation. Here we cultured and differentiated CDCs using protocols aimed to maintain stemness or to promote differentiation, including triggering fatty acid oxidation using an agonist of peroxisome proliferator-activated receptor alpha (PPARα). Metabolic changes were characterised in undifferentiated CDCs and during differentiation towards a cardiac phenotype. CDCs from rat atria were expanded on fibronectin or collagen IV via cardiosphere formation. Differentiation was assessed using flow cytometry and qPCR and substrate metabolism was quantified using radiolabelled substrates. Collagen IV promoted proliferation of CDCs whereas fibronectin primed cells for differentiation towards a cardiac phenotype. In both populations, treatment with 5-Azacytidine induced a switch towards oxidative metabolism, as shown by changes in gene expression, decreased glycolytic flux and increased oxidation of glucose and palmitate. Addition of a PPARα agonist during differentiation increased both glucose and fatty acid oxidation and expression of cardiac genes. We conclude that oxidative metabolism and cell differentiation act in partnership with increases in one driving an increase in the other.


Assuntos
Átrios do Coração , Miócitos Cardíacos , Animais , Diferenciação Celular , Células Cultivadas , Glicólise , Miócitos Cardíacos/metabolismo , Ratos
20.
Diabetes ; 70(11): 2518-2531, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34526367

RESUMO

Type 2 diabetes (T2D) impairs hypoxia-inducible factor (HIF)1α activation, a master transcription factor that drives cellular adaptation to hypoxia. Reduced activation of HIF1α contributes to the impaired post-ischemic remodeling observed following myocardial infarction in T2D. Molidustat is an HIF stabilizer currently undergoing clinical trials for the treatment of renal anemia associated with chronic kidney disease; however, it may provide a route to pharmacologically activate HIF1α in the T2D heart. In human cardiomyocytes, molidustat stabilized HIF1α and downstream HIF target genes, promoting anaerobic glucose metabolism. In hypoxia, insulin resistance blunted HIF1α activation and downstream signaling, but this was reversed by molidustat. In T2D rats, oral treatment with molidustat rescued the cardiac metabolic dysfunction caused by T2D, promoting glucose metabolism and mitochondrial function, while suppressing fatty acid oxidation and lipid accumulation. This resulted in beneficial effects on post-ischemic cardiac function, with the impaired contractile recovery in T2D heart reversed by molidustat treatment. In conclusion, pharmacological HIF1α stabilization can overcome the blunted hypoxic response induced by insulin resistance. In vivo this corrected the abnormal metabolic phenotype and impaired post-ischemic recovery of the diabetic heart. Therefore, molidustat may be an effective compound to further explore the clinical translatability of HIF1α activation in the diabetic heart.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pirazóis/farmacologia , Triazóis/farmacologia , Adaptação Fisiológica , Anemia Falciforme , Animais , Linhagem Celular , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metabolismo Energético , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Resistência à Insulina , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA