Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(3): 953-966, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749696

RESUMO

Geometrically necessary dislocations (GNDs) play a key role in accommodating strain incompatibility between neighboring grains in polycrystalline materials. One critical step toward accurately capturing GNDs in deformation models involves studying the microstructural features that promote GND accumulation and the resulting character of GND fields. This study utilizes high-resolution electron backscatter diffraction to map GND populations in a large polycrystalline sample of pure tantalum, under simple tension. A total of 1,989 grains, 3,518 grain boundaries (GBs), and 3,207 triple junctions (TJs) were examined in a subsurface region of the sample. Correlations between GND density and GB character, and to some extent, TJ character, are investigated. Statistical geometrical relationships between these entities are quantified, and also visualized, using a novel application of two-point statistics. The nature of GNDs across the sample is also visualized and assessed using a recently developed method of mapping the local net Burgers vectors. The different approaches to characterizing GND distribution are compared in terms of how they quantify the size of near boundary gradient zones.

2.
Microsc Microanal ; 21(4): 969-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26189352

RESUMO

Using an in situ load frame within a scanning electron microscope, a microstructural section on the surface of an annealed tantalum (Ta) polycrystalline specimen was mapped at successive tensile strain intervals, up to ~20% strain, using electron backscatter diffraction. A grain identification and correlation technique was developed for characterizing the evolving microstructure during loading. Presenting the correlated results builds on the reference orientation deviation (ROD) map concept where individual orientation measurements within a grain are compared with a reference orientation associated with that grain. In this case, individual orientation measurements in a deformed grain are measured relative to a reference orientation derived from the undeformed (initial) configuration rather than the current deformed configuration as has been done for previous ROD schemes. Using this technique helps reveal the evolution of crystallographic orientation gradients and development of deformation-induced substructure within grains. Although overall crystallographic texture evolved slowly during deformation, orientation spread within grains developed quickly. In some locations, misorientation relative to the original orientation of a grain exceeded 20° by 15% strain. The largest orientation changes often appeared near grain boundaries suggesting that these regions were preferred locations for the initial development of subgrains.

3.
ACS Appl Eng Mater ; 2(4): 818-828, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38737588

RESUMO

Producing soft magnetic alloys by additive manufacturing has the potential to overcome cracking and brittle fracture issues associated with conventional thermomechanical processing. Fe-Co alloys exhibit high magnetic saturation but low ductility that makes them difficult to process by commercial methods. Ni-Fe alloys have good ductility and high permeability in comparison to Fe-Co, but they suffer from low magnetic saturation. Functional grading between Fe-Co and Ni-Fe alloys through blown powder directed energy deposition can produce soft magnetic materials that combine and enhance properties beyond the strengths of the individual magnetic materials. This work focuses on the microstructure, crystal structure, and magnetic properties of functionally graded Fe49Co49V2/Ni80Fe16Mo4 coupons. The grading between the two materials is found to refine the microstructure, thereby improving the mechanical hardness without the use of a nonmagnetic element. Postbuild thermal treatments are found to recrystallize the microstructure and increase the grain size, leading to improved magnetic properties. Analysis of crystal structures provides an understanding of the solubility limits and phase equilibria between the BCC (Fe-Co) and FCC (Ni-Fe) structures. Success in functional grading of soft magnets may provide a pathway toward improving energy conversion efficiency through strategic combinations of high saturation and high strength materials.

4.
Sci Rep ; 8(1): 5540, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615765

RESUMO

Deformation mechanisms in bcc metals, especially in dynamic regimes, show unusual complexity, which complicates their use in high-reliability applications. Here, we employ novel, high-velocity cylinder impact experiments to explore plastic anisotropy in single crystal specimens under high-rate loading. The bcc tantalum single crystals exhibit unusually high deformation localization and strong plastic anisotropy when compared to polycrystalline samples. Several impact orientations - [100], [110], [111] and [[Formula: see text]] - are characterized over a range of impact velocities to examine orientation-dependent mechanical behavior versus strain rate. Moreover, the anisotropy and localized plastic strain seen in the recovered cylinders exhibit strong axial symmetries which differed according to lattice orientation. Two-, three-, and four-fold symmetries are observed. We propose a simple crystallographic argument, based on the Schmid law, to understand the observed symmetries. These tests are the first to explore the role of single-crystal orientation in Taylor impact tests and they clearly demonstrate the importance of crystallography in high strain rate and temperature deformation regimes. These results provide critical data to allow dramatically improved high-rate crystal plasticity models and will spur renewed interest in the role of crystallography to deformation in dynamics regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA