Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Pathol ; 193(12): 1900-1909, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37673331

RESUMO

The gut microbiota was initially thought to develop into a stable, adult-like profile during early postnatal life. The formation of the gut microbiota during early life has been shown to contribute to healthy growth and has lifelong implications for host health. Adolescence, the developmental period between childhood and adulthood, is a critical window for healthy growth and maturation. The composition of the gut microbiota in adolescents is distinct from that of children and adults, which supports the premise that the gut microbiota continues to develop during adolescence toward an adult-like profile. Research has begun to shift its focus from understanding the gut microbiome at the extremes of the life span to evaluating the importance of the gut microbiome during adolescence and its role in healthy development. This article provides an overview of adolescent development, host-microbiota interactions, and experimental models used to discern effects of gut microbiota on health and disease. Herein, the role of the gut microbiota is reviewed as it relates to adolescent: i) brain development, cognition, and behavior; ii) metabolism and adiposity; and iii) skeletal growth and bone mass accrual. Future directions are addressed, including omics investigations defining mechanisms through which the gut microbiota influences adolescent development. Furthermore, we discuss advancing noninvasive interventions targeting the adolescent gut microbiota that could be employed to support healthy growth and maturation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Adulto , Adolescente , Humanos , Cognição , Longevidade , Obesidade
2.
Am J Pathol ; 193(6): 796-812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906264

RESUMO

Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop toward an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. Herein, a retrospective analysis of Medicaid claims data was performed, which indicated that tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. The purpose of this was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at different time points to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal farnesoid X receptor-fibroblast growth factor 15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotic exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.


Assuntos
Adiposidade , Antibacterianos , Masculino , Camundongos , Animais , Antibacterianos/efeitos adversos , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fígado/metabolismo , Tetraciclinas/metabolismo
3.
J Clin Periodontol ; 50(12): 1670-1684, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37667415

RESUMO

AIM: Antimicrobial-induced shifts in commensal oral microbiota can dysregulate helper T-cell oral immunity to affect osteoclast-osteoblast actions in alveolar bone. Antibiotic prophylaxis is commonly performed with dental implant placement surgery to prevent post-surgical complications. However, antibiotic prophylaxis effects on osteoimmune processes supporting dental implant osseointegration are unknown. The aim of the study was to discern the impact of antibiotic prophylaxis on dental implant placement surgery-induced osteoimmune wound healing and osseointegration. MATERIALS AND METHODS: We performed SHAM or dental implant placement surgery in mice. Groups were administered prophylactic antibiotics (amoxicillin or clindamycin) or vehicle. Gingival bacteriome was assessed via 16S sequencing. Helper T-cell oral immunity was evaluated by flow cytometry. Osteoclasts and osteoblasts were assessed via histomorphometry. Implant osseointegration was evaluated by micro-computed tomography. RESULTS: Dental implant placement surgery up-regulated TH 1, TH 2 and TREG cells in cervical lymph nodes (CLNs), which infers helper T-cell oral immunity contributes to dental implant placement osseous wound healing. Prophylactic antibiotics with dental implant placement surgery caused a bacterial dysbiosis, suppressed TH 1, TH 2 and TREG cells in CLNs, reduced osteoclasts and osteoblasts lining peri-implant alveolar bone, and attenuated the alveolar bone-implant interface. CONCLUSIONS: Antibiotic prophylaxis dysregulates dental implant placement surgery-induced osteoimmune wound healing and attenuates the alveolar bone-implant interface in mice.


Assuntos
Implantes Dentários , Animais , Camundongos , Antibioticoprofilaxia , Interface Osso-Implante , Microtomografia por Raio-X , Implantação Dentária Endóssea/métodos , Osseointegração/fisiologia , Cicatrização/fisiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Lab Invest ; 102(4): 363-375, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34934182

RESUMO

The alveolar bone is a unique osseous tissue due to the presence of the teeth and the proximity of commensal oral microbes. Commensal microbe effects on alveolar bone homeostasis have been attributed to the oral microbiota, yet the impact of commensal gut microbes is unknown. Study purpose was to elucidate whether commensal gut microbes regulate osteoimmune mechanisms and skeletal homeostasis in alveolar bone. Male C57BL/6T germfree (GF) littermate mice were maintained as GF or monoassociated with segmented filamentous bacteria (SFB), a commensal gut bacterium. SFB has been shown to elicit broad immune response effects, including the induction of TH17/IL17A immunity, which impacts the development and homeostasis of host tissues. SFB colonized the gut, but not oral cavity, and increased IL17A levels in the ileum and serum. SFB had catabolic effects on alveolar bone and non-oral skeletal sites, which was attributed to enhanced osteoclastogenesis. The alveolar bone marrow of SFB vs. GF mice had increased dendritic cells, activated helper T-cells, TH1 cells, TH17 cells, and upregulated Tnf. Primary osteoblast cultures from SFB and GF mice were stimulated with vehicle-control, IL17A, or TNF to elucidate osteoblast-derived signaling factors contributing to the pro-osteoclastic phenotype in SFB mice. Treatment of RAW264.7 osteoclastic cells with supernatants from vehicle-stimulated SFB vs. GF osteoblasts recapitulated the osteoclast phenotype found in vivo. Supernatants from TNF-stimulated osteoblasts normalized RAW264.7 osteoclast endpoints across SFB and GF cultures, which was dependent on the induction of CXCL1 and CCL2. This report reveals that commensal gut microbes have the capacity to regulate osteoimmune processes in alveolar bone. Outcomes from this investigation challenge the current paradigm that alveolar bone health and homeostasis is strictly regulated by oral microbes.


Assuntos
Osso e Ossos , Osteoclastos , Animais , Bactérias , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Células Th17
5.
FASEB J ; 35(11): e22015, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699641

RESUMO

Periodontitis-mediated alveolar bone loss is caused by dysbiotic shifts in the commensal oral microbiota that upregulate proinflammatory osteoimmune responses. The study purpose was to determine whether antimicrobial-induced disruption of the commensal microbiota has deleterious effects on alveolar bone. We administered an antibiotic cocktail, minocycline, or vehicle-control to sex-matched C57BL/6T mice from age 6- to 12 weeks. Antibiotic cocktail and minocycline had catabolic effects on alveolar bone in specific-pathogen-free (SPF) mice. We then administered minocycline or vehicle-control to male mice reared under SPF and germ-free conditions, and we subjected minocycline-treated SPF mice to chlorhexidine oral antiseptic rinses. Alveolar bone loss was greater in vehicle-treated SPF versus germ-free mice, demonstrating that the commensal microbiota drives naturally occurring alveolar bone loss. Minocycline- versus vehicle-treated germ-free mice had similar alveolar bone loss outcomes, implying that antimicrobial-driven alveolar bone loss is microbiota dependent. Minocycline induced phylum-level shifts in the oral bacteriome and exacerbated naturally occurring alveolar bone loss in SPF mice. Chlorhexidine further disrupted the oral bacteriome and worsened alveolar bone loss in minocycline-treated SPF mice, validating that antimicrobial-induced oral dysbiosis has deleterious effects on alveolar bone. Minocycline enhanced osteoclast size and interface with alveolar bone in SPF mice. Neutrophils and plasmacytoid dendritic cells were upregulated in cervical lymph nodes of minocycline-treated SPF mice. Paralleling the upregulated proinflammatory innate immune cells, minocycline therapy increased TH 1 and TH 17 cells that have known pro-osteoclastic actions in the alveolar bone. This report reveals that antimicrobial perturbation of the commensal microbiota induces a proinflammatory oral dysbiotic state that exacerbates naturally occurring alveolar bone loss.


Assuntos
Perda do Osso Alveolar/microbiologia , Antibacterianos/efeitos adversos , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Biomed Opt ; 28(9): 094802, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36911164

RESUMO

Significance: The scanning fiber endoscope (SFE), an ultrasmall optical imaging device with a large field-of-view (FOV) for having a clear forward view into the interior of blood vessels, has great potential in the cardiovascular disease diagnosis and surgery assistance, which is one of the key applications for short-wave infrared biomedical imaging. The state-of-the-art SFE system uses a miniaturized refractive spherical lens doublet for beam projection. A metalens is a promising alternative that can be made much thinner and has fewer off-axis aberrations than its refractive counterpart. Aim: We demonstrate a transmissive metalens working at 1310 nm for a forward viewing endoscope to achieve a shorter device length and better resolution at large field angles. Approach: We optimize the metalens of the SFE system using Zemax, fabricate it using e-beam lithography, characterize its optical performances, and compare them with the simulations. Results: The SFE system has a resolution of ∼ 140 µ m at the center of field (imaging distance 15 mm), an FOV of ∼ 70 deg , and a depth-of-focus of ∼ 15 mm , which are comparable with a state-of-the-art refractive lens SFE. The use of the metalens reduces the length of the optical track from 1.2 to 0.86 mm. The resolution of our metalens-based SFE drops by less than a factor of 2 at the edge of the FOV, whereas the refractive lens counterpart has a ∼ 3 times resolution degradation. Conclusions: These results show the promise of integrating a metalens into an endoscope for device minimization and optical performance improvement.


Assuntos
Cristalino , Lentes , Endoscopia Gastrointestinal , Cintilografia , Refração Ocular
7.
JBMR Plus ; 7(8): e10775, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37614301

RESUMO

Microbes colonize anatomical sites in health to form commensal microbial communities (e.g., commensal gut microbiota, commensal skin microbiota, commensal oral microbiota). Commensal microbiota has indirect effects on host growth and maturation through interactions with the host immune system. The commensal microbiota was recently introduced as a novel regulator of skeletal growth and morphology at noncraniofacial sites. Further, we and others have shown that commensal gut microbes, such as segmented filamentous bacteria (SFB), contribute to noncraniofacial skeletal growth and maturation. However, commensal microbiota effects on craniofacial skeletal growth and morphology are unclear. To determine the commensal microbiota's role in craniofacial skeletal growth and morphology, we performed craniometric and bone mineral density analyses on skulls from 9-week-old female C57BL/6T germ-free (GF) mice (no microbes), excluded-flora (EF) specific-pathogen-free mice (commensal microbiota), and murine-pathogen-free (MPF) specific-pathogen-free mice (commensal microbiota with SFB). Investigations comparing EF and GF mice revealed that commensal microbiota impacted the size and shape of the craniofacial skeleton. EF versus GF mice exhibited an elongated gross skull length. Cranial bone length analyses normalized to skull length showed that EF versus GF mice had enhanced frontal bone length and reduced cranial base length. The shortened cranial base in EF mice was attributed to decreased presphenoid, basisphenoid, and basioccipital bone lengths. Investigations comparing MPF mice and EF mice demonstrated that commensal gut microbes played a role in craniofacial skeletal morphology. Cranial bone length analyses normalized to skull length showed that MPF versus EF mice had reduced frontal bone length and increased cranial base length. The elongated cranial base in MPF mice was due to enhanced presphenoid bone length. This work, which introduces the commensal microbiota as a contributor to craniofacial skeletal growth, underscores that noninvasive interventions in the gut microbiome could potentially be employed to modify craniofacial skeletal morphology. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
Bone Rep ; 18: 101662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36860797

RESUMO

Osteoimmune studies have identified complement signaling as an important regulator of the skeleton. Specifically, complement anaphylatoxin receptors (i.e., C3aR, C5aR) are expressed on osteoblasts and osteoclasts, implying that C3a and/or C5a may be candidate mediators of skeletal homeostasis. The study aimed to determine how complement signaling influences bone modeling/remodeling in the young skeleton. Female C57BL/6J C3aR-/-C5aR-/- vs. wildtype and C3aR-/- vs. wildtype mice were examined at age 10 weeks. Trabecular and cortical bone parameters were analyzed by micro-CT. In situ osteoblast and osteoclast outcomes were determined by histomorphometry. Osteoblast and osteoclast precursors were assessed in vitro. C3aR-/-C5aR-/- mice displayed an increased trabecular bone phenotype at age 10 weeks. In vitro studies revealed C3aR-/-C5aR-/- vs. wildtype cultures had less bone-resorbing osteoclasts and increased bone-forming osteoblasts, which were validated in vivo. To determine whether C3aR alone was critical for the enhanced skeletal outcomes, wildtype vs. C3aR-/- mice were evaluated for osseous tissue outcomes. Paralleling skeletal findings in C3aR-/-C5aR-/- mice, C3aR-/- vs. wildtype mice had an enhanced trabecular bone volume fraction, which was attributed to increased trabecular number. There was elevated osteoblast activity and suppressed osteoclastic cells in C3aR-/- vs. wildtype mice. Furthermore, primary osteoblasts derived from wildtype mice were stimulated with exogenous C3a, which more profoundly upregulated C3ar1 and the pro-osteoclastic chemokine Cxcl1. This study introduces the C3a/C3aR signaling axis as a novel regulator of the young skeleton.

9.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413391

RESUMO

Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.


Assuntos
Minociclina , Osteogênese , Animais , Camundongos , Antibacterianos/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Minociclina/farmacologia
10.
Lab Chip ; 22(7): 1354-1364, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35212692

RESUMO

Minimally invasive core needle biopsies for medical diagnoses have become increasingly common for many diseases. Although tissue cores can yield more diagnostic information than fine needle biopsies and cytologic evaluations, there is no rapid assessment at the point-of-care for intact tissue cores that is low-cost and non-destructive to the biopsy. We have developed a proof-of-concept 3D printed millifluidic histopathology lab-on-a-chip device to automatically handle, process, and image fresh core needle biopsies. This device, named CoreView, includes modules for biopsy removal from the acquisition tool, transport, staining and rinsing, imaging, segmentation, and multiplexed storage. Reliable removal from side-cutting needles and bidirectional fluid transport of core needle biopsies of five tissue types has been demonstrated with 0.5 mm positioning accuracy. Automation is aided by a MATLAB-based biopsy tracking algorithm that can detect the location of tissue and air bubbles in the channels of the millifluidic chip. With current and emerging optical imaging technologies, CoreView can be used for a rapid adequacy test at the point-of-care for tissue identification as well as glomeruli counting in renal core needle biopsies.


Assuntos
Algoritmos , Rim , Biópsia , Biópsia com Agulha de Grande Calibre
11.
IEEE Trans Biomed Eng ; 69(9): 2776-2786, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35196222

RESUMO

OBJECTIVE: Bacteria in the dental biofilm produceacid after consumption of carbohydrates which if left unmonitored leads to caries formation. We present O-pH, a device that can measure dental biofilm acidity and provide quantitative feedback to assist in oral health monitoring. METHOD: O-pH utilizes a ratiometric pH sensing method by capturing fluorescence of Sodium Fluorescein, an FDA approved chemical dye. The device was calibrated to a lab pH meter using buffered fluorescein solution with a correlation coefficient of 0.97. The calibration was further verified in vitro on additional buffered solution, artificial, and extracted teeth. An in vivo study on 30 pediatric subjects was performed to measure pH before (rest pH) and after (drop pH) a sugar rinse, and the resultant difference in pH (diff pH) was calculated. The study enrolled subjects with low (Post-Cleaning) and heavy (Pre-Cleaning) biofilm load, having both unhealthy/healthy surfaces. Further, we modified point-based O-pH to an image-based device using a multimode-scanning fiber endoscope (mm-SFE) and tested in vivo on one subject. RESULTS AND CONCLUSION: We found significant difference between Post-Cleaning and Pre-Cleaning group using drop pH and diff pH. Additionally, in Pre-Cleaning group, the rest and drop pH is lower at the caries surfaces compared to healthy surfaces. Similar trend was not noticed in the Post-Cleaning group. mm-SFE pH scope recorded image-based pH heatmap of a subject with an average diff pH of 1.5. SIGNIFICANCE: This work builds an optical pH prototype and presents a pioneering study for non-invasively measuring pH of dental biofilm clinically.


Assuntos
Biofilmes , Esmalte Dentário , Calibragem , Criança , Esmalte Dentário/diagnóstico por imagem , Humanos , Concentração de Íons de Hidrogênio
12.
IEEE J Transl Eng Health Med ; 9: 2500112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633870

RESUMO

Clinical sampling of tissue that is read by a pathologist is currently the gold standard for making a disease diagnosis, but the few minimally invasive techniques available for small duct biopsies have low sensitivity, increasing the likelihood of false negative diagnoses. We propose a novel biopsy device designed to accurately sample tissue in a biliary stricture under fluoroscopy or endoscopic guidance. The device consists of thin blades organized around the circumference of a cylinder that are deployed into a cutting annulus capable of comprehensively sampling tissue from a stricture. A parametric study of the device performance was done using finite element analysis; this includes the blade deployment under combined axial compression and torsion followed by an axial 'cutting' step. The clinical feasibility of the device is determined by considering maximum deployment forces, the radial expansion achieved and the cutting stiffness. We find practical parameters for the device operation to be an overall length of 10 mm and a diameter of 3.5 mm for a [Formula: see text] blade thickness, which allow the device to be safely deployed with a force of 10N and achieve an expansion over 3x its original diameter. A model device was fabricated with these parameters and a [Formula: see text] thickness out of a NiTi superalloy and tested to validate the performance. The device showed strong agreement with an equivalent numerical model, reaching a peak force within 2% of that predicted numerically and fully recovering after compression to 20% of its length. Clinical and Translational Impact Statement -This pre-clinical research conceptually demonstrates a novel expandable device to biopsy tissue in narrow strictures during an ERCP procedure. It can greatly improve diagnostic tissue yield compared to existing methods.


Assuntos
Sistema Biliar , Colestase , Biópsia , Colangiopancreatografia Retrógrada Endoscópica , Constrição Patológica , Humanos
13.
J Biomed Opt ; 26(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33442964

RESUMO

The erratum corrects a grant number listed in Acknowledgments section of the original article.

14.
JBMR Plus ; 4(3): e10338, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32161843

RESUMO

The commensal gut microbiota critically regulates immunomodulatory processes that influence normal skeletal growth and maturation. However, the influence of specific microbes on commensal gut microbiota osteoimmunoregulatory actions is unknown. We have shown previously that the commensal gut microbiota enhances TH17/IL17A immune response effects in marrow and liver that have procatabolic/antianabolic actions in the skeleton. Segmented filamentous bacteria (SFB), a specific commensal gut bacterium within phylum Firmicutes, potently induces TH17/IL17A-mediated immunity. The study purpose was to delineate the influence of SFB on commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal development. Two murine models were utilized: SFB-monoassociated mice versus germ-free (GF) mice and specific-pathogen-free (SPF) mice +/- SFB. SFB colonization was validated by 16S rDNA analysis, and SFB-induced TH17/IL17A immunity was confirmed by upregulation of Il17a in ileum and IL17A in serum. SFB-colonized mice had an osteopenic trabecular bone phenotype, which was attributed to SFB actions suppressing osteoblastogenesis and enhancing osteoclastogenesis. Intriguingly, SFB-colonized mice had increased expression of proinflammatory chemokines and acute-phase reactants in the liver. Lipocalin-2 (LCN2), an acute-phase reactant and antimicrobial peptide, was substantially elevated in the liver and serum of SFB-colonized mice, which supports the notion that SFB regulation of commensal gut microbiota osteoimmunomodulatory actions are mediated in part through a gut-liver-bone axis. Proinflammatory TH17 and TH1 cells were increased in liver-draining lymph nodes of SFB-colonized mice, which further substantiates that SFB osteoimmune-response effects may be mediated through the liver. SFB-induction of Il17a in the gut and Lcn2 in the liver resulted in increased circulating levels of IL17A and LCN2. Recognizing that IL17A and LCN2 support osteoclastogenesis/suppress osteoblastogenesis, SFB actions impairing postpubertal skeletal development appear to be mediated through immunomodulatory effects in both the gut and liver. This research reveals that specific microbes critically impact commensal gut microbiota immunomodulatory actions regulating normal postpubertal skeletal growth and maturation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

15.
J Biomed Opt ; 24(1): 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30623630

RESUMO

Sugar-rich diets and poor dental hygiene promote the formation of a biofilm (plaque) that strongly adheres to the dental enamel surface and fosters the evolution of aciduric bacteria. The acid contributes to demineralization of the exterior tooth enamel, which accelerates after the pH drops below a critical value (∼5.5) for extended time periods resulting in the need for restorative procedures. Preventative techniques to alert the dentist and caries-susceptible patients regarding vulnerability to dental decay require a clinical measure of plaque activity. Therefore, there is a need to evaluate the acid production capability of plaque deposits in the pits and fissures of occlusal and interproximal regions. A ratiometric fluorescence pH-sensing device has been developed using an FDA-approved dye and LED excitation. Fluorescein spectral profiles were collected using a spectrometer and analyzed with a spectral unmixing algorithm for calibration over the pH range of 4.5 to 7. An in vivo pilot study on human subjects was performed using a sucrose rinse to accelerate bacterial metabolism and to measure the time-dependent drop in pH. The optical system is relatively immune to confounding factors such as photobleaching, dye concentration, and variation in excitation intensity associated with earlier dye-based pH measurement techniques.


Assuntos
Cárie Dentária/diagnóstico por imagem , Esmalte Dentário/diagnóstico por imagem , Placa Dentária/diagnóstico por imagem , Corantes Fluorescentes/química , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Adulto , Algoritmos , Biofilmes , Soluções Tampão , Calibragem , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Óptica e Fotônica , Higiene Bucal , Projetos Piloto , Sacarose/química , Desmineralização do Dente , Adulto Jovem
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3738-3741, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441179

RESUMO

Undetected caries can lead to painful cavities and surgical restorations. Lack of proper detection tools makes caries prevention dependent on dentist's expertise and presents obstacles in oral health monitoring. To overcome this problem, we have developed a new approach to predict early stages of enamel demineralization caused by oral bacteria. These bacteria metabolize sugars in our food and produce organic acids that lead to cavities. Measuring the acidity level can help predict early stages of tooth decay. pH paper or pH electrodes can be used to monitor acidity, but neither are able to track pH levels in all dental locations. Our device, DpOW, is a noncontact optics-based pH device that uses changes in the spectral fluorescence of FDA allowed fluorescein dye to measure acidity levels in difficult to access dental locations such as occlusal fissures. A prototype has been tested over a wide pH range (7.12 to 3.89) and shown to track the change in pH with 0.94 correlation coefficient.


Assuntos
Esmalte Dentário , Cárie Dentária , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Desmineralização do Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA