Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Public Health ; 114(2): 173-174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127728
2.
Int J Cancer ; 129(1): 245-55, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21170960

RESUMO

Angiogenesis, a critical driver of tumor development, is controlled by interconnected signaling pathways. Vascular endothelial growth factor receptor (VEGFR) 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 play crucial roles in the biology of normal and tumor vasculature. Regorafenib (BAY 73-4506), a novel oral multikinase inhibitor, potently inhibits these endothelial cell kinases in biochemical and cellular kinase phosphorylation assays. Furthermore, regorafenib inhibits additional angiogenic kinases (VEGFR1/3, platelet-derived growth factor receptor-ß and fibroblast growth factor receptor 1) and the mutant oncogenic kinases KIT, RET and B-RAF. The antiangiogenic effect of regorafenib was demonstrated in vivo by dynamic contrast-enhanced magnetic resonance imaging. Regorafenib administered once orally at 10 mg/kg significantly decreased the extravasation of Gadomer in the vasculature of rat GS9L glioblastoma tumor xenografts. In a daily (qd)×4 dosing study, the pharmacodynamic effects persisted for 48 hr after the last dosing and correlated with tumor growth inhibition (TGI). A significant reduction in tumor microvessel area was observed in a human colorectal xenograft after qd×5 dosing at 10 and 30 mg/kg. Regorafenib exhibited potent dose-dependent TGI in various preclinical human xenograft models in mice, with tumor shrinkages observed in breast MDA-MB-231 and renal 786-O carcinoma models. Pharmacodynamic analyses of the breast model revealed strong reduction in staining of proliferation marker Ki-67 and phosphorylated extracellular regulated kinases 1/2. These data demonstrate that regorafenib is a well-tolerated, orally active multikinase inhibitor with a distinct target profile that may have therapeutic benefit in human malignancies.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Fosforilação , Ratos , Ratos Endogâmicos F344
3.
Cancer Chemother Pharmacol ; 59(2): 183-95, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16724239

RESUMO

PURPOSE: Sorafenib tosylate (sorafenib, BAY 43-9006, Nexavar) is a multi-kinase inhibitor that targets tumor cell proliferation and angiogenesis. These studies evaluated the efficacy and tolerability of combinations of sorafenib plus agents used to treat non-small cell lung cancer (NSCLC) using preclinical models of that disease. METHODS: Intravenous (iv) vinorelbine and interperitoneal (ip) cisplatin were administered intermittently (q4d x 3) in combination with sorafenib administered orally (po) once daily for 9 days starting on the same day as the standard agent. In studies with sorafenib and gefitinib, both agents were administered po daily for 10 days starting on the same day. Treatment in all studies was initiated against established sc tumors, and each study was conducted in duplicate. Efficacy was assessed as the delay in tumor growth to a specified size (TGD). RESULTS: Vinorelbine (6.7 mg/kg) and sorafenib (40 mg/kg) produced TGDs of 2.4 and 7.8 days, respectively, in the NCI-H460 NSCLC model. Combination therapy produced a 10.0-day TGD with no increase in toxicity. Combination therapy in the NCI-H23 NSCLC model with the highest evaluated dose levels of sorafenib plus cisplatin was well tolerated and produced TGDs equivalent to those produced by cisplatin alone. Lower dose levels of each agent produced approximately additive TGD's. Combination therapy in the A549 NSCLC model with sorafenib and gefitinib produced TGDs equivalent to that produced by sorafenib alone with no toxicity. Tumor growth in the MDA-MB-231 mammary tumor model, that contains mutations in signal transduction proteins downstream of the EGF receptor (the target of gefitinib) was also inhibited by sorafenib, but not by gefitinib. CONCLUSION: Concurrent administration of sorafenib and vinorelbine, cisplatin or gefitinib was at least as efficacious as the individual agents alone and was well tolerated. These results support the inclusion of sorafenib in clinical trials in NSCLC employing combinations of both cytotoxic and cytostatic agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Benzenossulfonatos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Citotoxinas/administração & dosagem , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Gefitinibe , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Niacinamida/análogos & derivados , Compostos de Fenilureia , Piridinas/administração & dosagem , Quinazolinas/farmacologia , Sorafenibe , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vimblastina/uso terapêutico , Vinorelbina , Redução de Peso/efeitos dos fármacos
4.
Cancer Chemother Pharmacol ; 59(5): 561-74, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17160391

RESUMO

PURPOSE: New research findings have revealed a key role for vascular endothelial growth factor (VEGF) in the stimulation of angiogenesis in clear cell renal carcinoma (RCC) which is a highly vascularized and treatment-resistant tumor. Sorafenib (BAY 43-9006, Nexavar) is a multi-kinase inhibitor which targets receptor tyrosine and serine/threonine kinases involved in tumor progression and tumor angiogenesis. The effect of sorafenib on tumor growth and tumor histology was assessed in both ectopic and orthotopic mouse models of RCC. METHODS: Sorafenib was administered orally to mice bearing subcutaneous (SC, ectopic) or sub-renal capsule (SRC, orthotopic) tumors of murine (Renca) or human (786-O) RCC. Treatment efficacy was determined by measurements of tumor volume and tumor growth delay. In mechanism of action studies, using the 786-O and Renca RCC tumor models, the effect of sorafenib was assessed after dosing for 3 or 5 days in the SC models and 21 days in the SRC models. Inhibition of tumor angiogenesis was assessed by measuring level of CD31 and alpha-smooth muscle actin (alphaSMA) staining by immunohistochemistry (IHC). The effect of sorafenib on MAPK signaling, cell cycle progression and cell proliferation was also assessed by IHC by measuring levels of phospho-ERK, phospho-histone H3 and Ki-67 staining, respectively. The extent of tumor apoptosis was measured by terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. Finally, the effects of sorafenib on tumor hypoxia was assessed in 786-O SC model by injecting mice intravenously with pimonidazole hydrochloride 1 h before tumor collection and tumor sections were stained with a FITC-conjugated Hypoxyprobe antibody. RESULTS: Sorafenib produced significant tumor growth inhibition (TGI) and a reduction in tumor vasculature of both ectopic and orthotopic Renca and 786-O tumors, at a dose as low as 15 mg/kg when administered daily. Inhibition of tumor vasculature was observed as early as 3 days post-treatment, and this inhibition of angiogenesis correlated with increased level of tumor apoptosis (TUNEL-positive) and central necrosis. Consistent with these results, a significant increase in tumor hypoxia was also observed 3 days post-treatment in 786-O SC model. However, no significant effect of sorafenib on phospho-ERK, phospho-histone H3 or Ki-67 levels in either RCC tumor model was observed. CONCLUSION: Our results show the ability of sorafenib to potently inhibit the growth of both ectopically- and orthotopically-implanted Renca and 786-O tumors. The observed tumor growth inhibition and tumor stasis or stabilization correlated strongly with decreased tumor angiogenesis, which was due, at least in part, to inhibition of VEGF and PDGF-mediated endothelial cell and pericyte survival. Finally, sorafenib-mediated inhibition of tumor growth and angiogenesis occurred at concentrations equivalent to those achieved in patients in the clinic.


Assuntos
Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/patologia , Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Benzenossulfonatos/uso terapêutico , Hipóxia/induzido quimicamente , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Piridinas/uso terapêutico , Actinas/metabolismo , Adenocarcinoma de Células Claras/irrigação sanguínea , Animais , Capilares/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Hipóxia/patologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Neoplasias Renais/irrigação sanguínea , Camundongos , Camundongos Nus , Niacinamida/análogos & derivados , Compostos de Fenilureia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sorafenibe , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Cancer Ther ; 5(9): 2378-87, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16985072

RESUMO

This study was undertaken to characterize preclinical cytotoxic interactions for human malignancies between the multikinase inhibitor sorafenib (BAY 43-9006) and proteasome inhibitors bortezomib or MG132. Multiple tumor cell lines of varying histiotypes, including A549 (lung adenocarcinoma), 786-O (renal cell carcinoma), HeLa (cervical carcinoma), MDA-MB-231 (breast), K562 (chronic myelogenous leukemia), Jurkat (acute T-cell leukemia), MEC-2 (B-chronic lymphocytic leukemia), and U251 and D37 (glioma), as well as cells derived from primary human glioma tumors that are likely a more clinically relevant model were treated with sorafenib or bortezomib alone or in combination. Sorafenib and bortezomib synergistically induced a marked increase in mitochondrial injury and apoptosis, reflected by cytochrome c release, caspase-3 cleavage, and poly(ADP-ribose) polymerase degradation in a broad range of solid tumor and leukemia cell lines. These findings were accompanied by several biochemical changes, including decreased phosphorylation of vascular endothelial growth factor receptor-2, platelet-derived growth factor receptor-beta, and Akt and increased phosphorylation of stress-related c-Jun NH2-terminal kinase (JNK). Inhibition of Akt was required for synergism, as a constitutively active Akt protected cells against apoptosis induced by the combination. Alternatively, the JNK inhibitor SP600125 could also protect cells from apoptosis induced by the combination, indicating that both inhibition of Akt and activation of JNK were required for the synergism. These findings show that sorafenib interacts synergistically with bortezomib to induce apoptosis in a broad spectrum of neoplastic cell lines and show an important role for the Akt and JNK pathways in mediating synergism. Further clinical development of this combination seems warranted.


Assuntos
Apoptose/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Ácidos Borônicos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Oncogênica v-akt/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacologia , Piridinas/farmacologia , Antineoplásicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Células Jurkat , Células K562 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Niacinamida/análogos & derivados , Compostos de Fenilureia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sorafenibe
6.
Oncogene ; 24(46): 6861-9, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16007148

RESUMO

BAY 43-9006, a multikinase inhibitor that targets Raf, prevents tumor cell proliferation in vitro and inhibits diverse human tumor xenografts in vivo. The mechanism of action of BAY 43-9006 remains incompletely defined. In the present study, the effects of BAY 43-9006 on the antiapoptotic Bcl-2 family member Mcl-1 were examined. Treatment of A549 lung cancer cells with BAY 43-9006 diminished Mcl-1 levels in a time- and dose-dependent manner without affecting other Bcl-2 family members. Similar BAY 43-9006-induced Mcl-1 downregulation was observed in ACHN (renal cell), HT-29 (colon), MDA-MB-231 (breast), KMCH (cholangiocarcinoma), Jurkat (acute T-cell leukemia), K562 (chronic myelogenous leukemia) and MEC-2 (chronic lymphocytic leukemia) cells. Mcl-1 mRNA levels did not change in BAY 43-9006-treated cells. Instead, BAY 43-9006 enhanced proteasome-mediated Mcl-1 degradation. This Mcl-1 downregulation was followed by mitochondrial cytochrome c release and caspase activation as well as enhanced sensitivity to other proapoptotic agents. The caspase inhibitor Boc-D-fmk inhibited BAY 43-9006-induced caspase activation but not cytochrome c release. In contrast, Mcl-1 overexpression inhibited cytochrome c release and other features of BAY 43-9006-induced apoptosis. Conversely, Mcl-1 downregulation by short hairpin RNA enhanced BAY 43-9006-induced apoptosis. Collectively, these findings demonstrate that drug-induced Mcl-1 downregulation contributes to the proapoptotic effects of BAY 43-9006.


Assuntos
Apoptose/efeitos dos fármacos , Benzenossulfonatos/farmacologia , Regulação para Baixo/fisiologia , Proteínas de Neoplasias/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Piridinas/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Sequência de Bases , Caspases/metabolismo , Linhagem Celular Tumoral , Primers do DNA , Ativação Enzimática , Humanos , Hidroquinonas/farmacologia , Sistema de Sinalização das MAP Quinases , Proteína de Sequência 1 de Leucemia de Células Mieloides , Niacinamida/análogos & derivados , Compostos de Fenilureia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorafenibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA