Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
N Engl J Med ; 389(12): 1085-1095, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733308

RESUMO

BACKGROUND: The effectiveness of inhaled glucocorticoids in shortening the time to symptom resolution or preventing hospitalization or death among outpatients with mild-to-moderate coronavirus disease 2019 (Covid-19) is unclear. METHODS: We conducted a decentralized, double-blind, randomized, placebo-controlled platform trial in the United States to assess the use of repurposed medications in outpatients with confirmed coronavirus disease 2019 (Covid-19). Nonhospitalized adults 30 years of age or older who had at least two symptoms of acute infection that had been present for no more than 7 days before enrollment were randomly assigned to receive inhaled fluticasone furoate at a dose of 200 µg once daily for 14 days or placebo. The primary outcome was the time to sustained recovery, defined as the third of 3 consecutive days without symptoms. Key secondary outcomes included hospitalization or death by day 28 and a composite outcome of the need for an urgent-care or emergency department visit or hospitalization or death through day 28. RESULTS: Of the 1407 enrolled participants who underwent randomization, 715 were assigned to receive inhaled fluticasone furoate and 692 to receive placebo, and 656 and 621, respectively, were included in the analysis. There was no evidence that the use of fluticasone furoate resulted in a shorter time to recovery than placebo (hazard ratio, 1.01; 95% credible interval, 0.91 to 1.12; posterior probability of benefit [defined as a hazard ratio >1], 0.56). A total of 24 participants (3.7%) in the fluticasone furoate group had urgent-care or emergency department visits or were hospitalized, as compared with 13 participants (2.1%) in the placebo group (hazard ratio, 1.9; 95% credible interval, 0.8 to 3.5). Three participants in each group were hospitalized, and no deaths occurred. Adverse events were uncommon in both groups. CONCLUSIONS: Treatment with inhaled fluticasone furoate for 14 days did not result in a shorter time to recovery than placebo among outpatients with Covid-19 in the United States. (Funded by the National Center for Advancing Translational Sciences and others; ACTIV-6 ClinicalTrials.gov number, NCT04885530.).


Assuntos
Androstadienos , Tratamento Farmacológico da COVID-19 , COVID-19 , Adulto , Humanos , Assistência Ambulatorial , Androstadienos/administração & dosagem , Androstadienos/efeitos adversos , Androstadienos/uso terapêutico , COVID-19/diagnóstico , COVID-19/terapia , Tratamento Farmacológico da COVID-19/efeitos adversos , Tratamento Farmacológico da COVID-19/métodos , Método Duplo-Cego , Administração por Inalação , Indução de Remissão , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 120(35): e2220669120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37616223

RESUMO

Since the pioneering works of Berg and Purcell, discriminating between diffusion followed by binding has played a central role in understanding cell signaling. B cell receptors (BCR) and antibodies (Ab) challenge that simplified view as binding to the antigen follows after a chain of diffusion and rotations, including whole molecule rotation and independent tilts and twists of their Fab arms due to their Y-shaped structure and flexibility. In this paper, we combine analytical calculations with Brownian simulations to derive the first-passage times due to these three rotations positioning the Fab paratopes at a proper distance and orientation required for antigen binding. Our results indicate that when measuring Ab-Ag effective kinetic binding rates, using experimental methods in which the analyte is in solution only gives values proportional to the intrinsic binding rates, [Formula: see text], and [Formula: see text], for values of [Formula: see text] up to [Formula: see text]. Beyond that, a plateau of the effective 3D on rate between [Formula: see text] and [Formula: see text] is attained. Additionally, for BCR-Ag interactions, the effective 2D on and off binding rates can only be inferred from the corresponding effective 3D on and off rates for values of effective 3D on rates lower than [Formula: see text]. This is highly relevant when trying to relate BCR-antigen-binding strength and B cell response, especially during germinal center reactions. Therefore, there is a pressing need to reexamine our current understanding of the BCR-antigen kinetic rates in germinal centers using the latest experimental assays for BCR-Ag interactions.


Assuntos
Anticorpos , Receptores de Antígenos de Linfócitos B , Cinética , Transdução de Sinais , Linfócitos B
3.
Artigo em Inglês | MEDLINE | ID: mdl-38935626

RESUMO

BACKGROUND: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. OBJECTIVE: To study IL-13 induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. METHODS: Quantitative CT (qCT) lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 severe, 11 non-severe asthma and 18 healthy participants) in the Severe Asthma Research Program (SARPIII) and measured for mucin and cilia related proteins. Epithelial cells were differentiated in air-liquid interphase (ALI) with IL-13 +/-dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF) and epithelial integrity (transepithelial electrical resistance, TEER). RESULTS: Increased Muc5AC (Δ+263.2±92.7 lums/EpiArea) and decreased ciliated cells (Δ-0.07±0.03 Foxj1+cells/EpiArea) were observed in biopsies from severe asthma when compared to healthy (p<0.01 and p=0.047 respectively). RNAseq of epithelial cell brushes confirmed a Muc5AC increase with a decrease in a 5-gene cilia-related mean in severe asthma compared to healthy (all p<0.05). IL-13 (5 ng/mL) differentiated ALI cultures of healthy and asthmatic (severe and non-severe participants) increased Muc5AC, decreased cilia (α-acytl-tubulin) in healthy (Δ+6.5±1.5%, Δ-14.1±2.7%; all p<0.001 respectively) and asthma (Δ+4.4±2.5%, Δ-13.1±2.7%; p=0.084, p<0.001 respectively); decreased epithelial integrity (TEER) in healthy (-140.9±21.3 [ohms], p<0.001) while decreasing CBF in asthma (Δ-4.4±1.7 [Hz], p<0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC but there was restoration of cilia in healthy and asthma participants (absolute increase of 67.5% and 32.5% cilia, all p<0.05 respectively) while CBF increased (Δ+3.6±1.1 [Hz], p<0.001) and TEER decreased (only in asthma Δ-37.8±16.2 [ohms] p<0.05). CONCLUSIONS: IL-13 drives features of airway remodeling in severe asthma which are partially reversed by inhibiting IL-4Rα receptor in vitro.

4.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113166

RESUMO

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Assuntos
Asma , Eosinofilia , Obesidade , Tomografia Computadorizada por Raios X , Humanos , Asma/diagnóstico por imagem , Asma/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Adulto , Eosinofilia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Índice de Massa Corporal
5.
Proc Natl Acad Sci U S A ; 119(22): e2201907119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617435

RESUMO

Signaling via the T cell receptor (TCR) is critical during the development, maintenance, and activation of T cells. Quantitative aspects of TCR signaling have an important role during positive and negative selection, lineage choice, and ability to respond to small amounts of antigen. By using a mutant mouse line expressing a hypomorphic allele of the CD3ζ chain, we show here that the strength of pre-TCR­mediated signaling during T cell development determines the diversity of the TCRß repertoire available for positive and negative selection, and hence of the final αßTCR repertoire. This finding uncovers an unexpected, pre-TCR signaling­dependent and repertoire­shaping role for ß-selection beyond selection of in-frame rearranged TCRß chains. Our data furthermore support a model of pre-TCR signaling in which the arrangement of this receptor in stable nanoclusters determines its quantitative signaling capacity.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Animais , Complexo CD3/genética , Diferenciação Celular , Camundongos , Camundongos Mutantes , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais , Linfócitos T/imunologia
6.
Proc Natl Acad Sci U S A ; 119(15): e2103745119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377801

RESUMO

Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model's prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats­hence shedding light on a long-standing debate over bats' conformity to ecogeographical patterns observed in other mammals­and offers a procedure for investigating complex macroecological patterns from first principles.


Assuntos
Regulação da Temperatura Corporal , Quirópteros , Voo Animal , Asas de Animais , Animais , Fenômenos Biofísicos , Tamanho Corporal , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Clima , Voo Animal/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38663815

RESUMO

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: We sought to determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during 3 years of observation in 480 participants in the Severe Asthma Research Program 3. RESULTS: Over 3 years, EPX levels in patients with asthma were higher than normal in 27% to 31% of serum samples and 36% to 53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts less than 150 cells/µL and 42% of participants with blood eosinophil counts between 150 and 299 cells/µL. Patients with persistently high sputum EPX values for 3 years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 patients with asthma who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSIONS: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.

8.
Nano Lett ; 24(26): 7911-7918, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889449

RESUMO

Manipulating spin transport enhances the functionality of electronic devices, allowing them to surpass physical constraints related to speed and power. For this reason, the use of van der Waals multiferroics at the interface of heterostructures offers promising prospects for developing high-performance devices, enabling the electrical control of spin information. Our work focuses primarily on a mechanism for multiferroicity in two-dimensional van der Waals materials that stems from an interplay between antiferromagnetism and the breaking of inversion symmetry in certain bilayers. We provide evidence for spin-electrical couplings that include manipulating van der Waals multiferroic edges via external voltages and the subsequent control of spin transport including for fully multiferroic spin field-effect transistors.

9.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L796-L804, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651338

RESUMO

Secreted deoxyribonucleases (DNases), such as DNase-I and DNase-IL3, degrade extracellular DNA, and endogenous DNases have roles in resolving airway inflammation and guarding against autoimmune responses to nucleotides. Subsets of patients with asthma have high airway DNA levels, but information about DNase activity in health and in asthma is lacking. To characterize DNase activity in health and in asthma, we developed a novel kinetic assay using a Taqman probe sequence that is quickly cleaved by DNase-I to produce a large product signal. We used this kinetic assay to measure DNase activity in sputum from participants in the Severe Asthma Research Program (SARP)-3 (n = 439) and from healthy controls (n = 89). We found that DNase activity was lower than normal in asthma [78.7 relative fluorescence units (RFU)/min vs. 120.4 RFU/min, P < 0.0001]. Compared to patients with asthma with sputum DNase activity in the upper tertile activity levels, those in the lower tertile of sputum DNase activity were characterized clinically by more severe disease and pathologically by airway eosinophilia and airway mucus plugging. Carbamylation of DNase-I, a post-translational modification that can be mediated by eosinophil peroxidase, inactivated DNase-I. In summary, a Taqman probe-based DNase activity assay uncovers low DNase activity in the asthma airway that is associated with more severe disease and airway mucus plugging and may be caused, at least in part, by eosinophil-mediated carbamylation.NEW & NOTEWORTHY We developed a new DNase assay and used it to show that DNase activity is impaired in asthma airways.


Assuntos
Asma , Desoxirribonuclease I , Escarro , Humanos , Asma/metabolismo , Asma/enzimologia , Feminino , Masculino , Escarro/metabolismo , Escarro/enzimologia , Adulto , Pessoa de Meia-Idade , Desoxirribonuclease I/metabolismo , Desoxirribonucleases/metabolismo
10.
EMBO J ; 39(15): e104749, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32525588

RESUMO

CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ceramidas/imunologia , Memória Imunológica , Receptores CCR5/deficiência , Animais , Antígenos/genética , Linfócitos T CD4-Positivos/citologia , Ceramidas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Receptores CCR5/imunologia
11.
Eur Respir J ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331459

RESUMO

BACKGROUND: Long COVID impacts ∼10% of people diagnosed with COVID-19, yet the pathophysiology driving ongoing symptoms is poorly understood. We hypothesised that 129Xe magnetic resonance imaging (MRI) could identify unique pulmonary phenotypic subgroups of long COVID, therefore we evaluated ventilation and gas exchange measurements with cluster analysis to generate imaging-based phenotypes. METHODS: COVID-negative controls and participants who previously tested positive for COVID-19 underwent 129XeMRI ∼14-months post-acute infection across three centres. Long COVID was defined as persistent dyspnea, chest tightness, cough, fatigue, nausea and/or loss of taste/smell at MRI; participants reporting no symptoms were considered fully-recovered. 129XeMRI ventilation defect percent (VDP) and membrane (Mem)/Gas, red blood cell (RBC)/Mem and RBC/Gas ratios were used in k-means clustering for long COVID, and measurements were compared using ANOVA with post-hoc Bonferroni correction. RESULTS: We evaluated 135 participants across three centres: 28 COVID-negative (40±16yrs), 34 fully-recovered (42±14yrs) and 73 long COVID (49±13yrs). RBC/Mem (p=0.03) and FEV1 (p=0.04) were different between long- and COVID-negative; FEV1 and all other pulmonary function tests (PFTs) were within normal ranges. Four unique long COVID clusters were identified compared with recovered and COVID-negative. Cluster1 was the youngest with normal MRI and mild gas-trapping; Cluster2 was the oldest, characterised by reduced RBC/Mem but normal PFTs; Cluster3 had mildly increased Mem/Gas with normal PFTs; and Cluster4 had markedly increased Mem/Gas with concomitant reduction in RBC/Mem and restrictive PFT pattern. CONCLUSION: We identified four 129XeMRI long COVID phenotypes with distinct characteristics. 129XeMRI can dissect pathophysiologic heterogeneity of long COVID to enable personalised patient care.

12.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253462

RESUMO

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Assuntos
Asma , Fator A de Crescimento do Endotélio Vascular , Adulto , Humanos , Proteômica , Fator 2 de Crescimento de Fibroblastos , Citocinas/metabolismo , Lavagem Broncoalveolar , Quimiocinas , Líquido da Lavagem Broncoalveolar
13.
Biometrics ; 80(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38465989

RESUMO

Computing the agreement between 2 continuous sequences is of great interest in statistics when comparing 2 instruments or one instrument with a gold standard. The probability of agreement quantifies the similarity between 2 variables of interest, and it is useful for determining what constitutes a practically important difference. In this article, we introduce a generalization of the PA for the treatment of spatial variables. Our proposal makes the PA dependent on the spatial lag. We establish the conditions for which the PA decays as a function of the distance lag for isotropic stationary and nonstationary spatial processes. Estimation is addressed through a first-order approximation that guarantees the asymptotic normality of the sample version of the PA. The sensitivity of the PA with respect to the covariance parameters is studied for finite sample size. The new method is described and illustrated with real data involving autumnal changes in the green chromatic coordinate (Gcc), an index of "greenness" that captures the phenological stage of tree leaves, is associated with carbon flux from ecosystems, and is estimated from repeated images of forest canopies.


Assuntos
Ecossistema , Florestas , Probabilidade , Tamanho da Amostra
14.
Ann Allergy Asthma Immunol ; 132(5): 623-629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237675

RESUMO

BACKGROUND: Early life respiratory syncytial virus (RSV) bronchiolitis is a significant risk factor for childhood asthma. In vitro and in vivo studies suggested that decreasing levels of airway matrix metalloproteinase (MMP)-9 during RSV bronchiolitis may be associated with clinical benefits. OBJECTIVE: To investigate whether azithromycin therapy during severe RSV bronchiolitis reduces upper airway MMP-9 levels, whether upper airway MMP-9 levels correlate with upper airway interleukin IL-8 levels, and whether MMP-9 level reduction is associated with reduced post-RSV recurrent wheeze (RW). METHODS: A total of 200 otherwise healthy 1- to 18-month-old infants hospitalized with RSV bronchiolitis were randomized into a double-blind, placebo-controlled trial of oral azithromycin (10 mg/kg daily for 7 days followed by 5 mg/kg daily for 7 days) or placebo. Infants were followed for 2 to 4 years for the outcome of RW (3 or more wheezing episodes). Nasal lavage samples for MMP-9 levels were obtained at baseline, day 14 (end of the study treatment), and after 6 months. RESULTS: Upper airway MMP-9 levels were highly correlated with IL-8 levels at all 3 time points: randomization, day 14, and 6 months (r = 0.80; P < .0001 for all time points). MMP-9 levels were similar between treatment groups at randomization, were lower on day 14 among children treated with azithromycin (P = .0085), but no longer different after 6 months. MMP-9 levels at baseline and change from baseline to day 14 were not associated with the development of RW (P = .49, .39, respectively). CONCLUSION: Azithromycin therapy in children hospitalized with RSV bronchiolitis had a short-term anti-inflammatory effect in reducing upper airway MMP-9 levels. However, the reduction in MMP-9 levels did not relate to subsequent RW post-RSV. TRIAL REGISTRATION: This study is a secondary analysis of the Azithromycin to Prevent Wheezing following severe RSV bronchiolitis-II clinical trial registered at Clinicaltrials.gov (NCT02911935).


Assuntos
Azitromicina , Metaloproteinase 9 da Matriz , Sons Respiratórios , Infecções por Vírus Respiratório Sincicial , Humanos , Azitromicina/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Lactente , Sons Respiratórios/efeitos dos fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Masculino , Feminino , Método Duplo-Cego , Bronquiolite Viral/tratamento farmacológico , Antibacterianos/uso terapêutico , Interleucina-8/metabolismo , Recidiva , Hospitalização
15.
Am J Respir Crit Care Med ; 207(4): 438-451, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36066606

RESUMO

Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.


Assuntos
Asma , Uteroglobina , Humanos , Asma/genética , Asma/metabolismo , Biomarcadores , Células Epiteliais/metabolismo , Inflamação/metabolismo , Estudos Prospectivos , Estudos Retrospectivos , RNA Mensageiro/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
16.
Am J Respir Crit Care Med ; 207(4): 475-484, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36194556

RESUMO

Rationale: Extrapulmonary manifestations of asthma, including fatty infiltration in tissues, may reflect systemic inflammation and influence lung function and disease severity. Objectives: To determine if skeletal muscle adiposity predicts lung function trajectory in asthma. Methods: Adult SARP III (Severe Asthma Research Program III) participants with baseline computed tomography imaging and longitudinal postbronchodilator FEV1% predicted (median follow-up 5 years [1,132 person-years]) were evaluated. The mean of left and right paraspinous muscle density (PSMD) at the 12th thoracic vertebral body was calculated (Hounsfield units [HU]). Lower PSMD reflects higher muscle adiposity. We derived PSMD reference ranges from healthy control subjects without asthma. A linear multivariable mixed-effects model was constructed to evaluate associations of baseline PSMD and lung function trajectory stratified by sex. Measurements and Main Results: Participants included 219 with asthma (67% women; mean [SD] body mass index, 32.3 [8.8] kg/m2) and 37 control subjects (51% women; mean [SD] body mass index, 26.3 [4.7] kg/m2). Participants with asthma had lower adjusted PSMD than control subjects (42.2 vs. 55.8 HU; P < 0.001). In adjusted models, PSMD predicted lung function trajectory in women with asthma (ß = -0.47 Δ slope per 10-HU decrease; P = 0.03) but not men (ß = 0.11 Δ slope per 10-HU decrease; P = 0.77). The highest PSMD tertile predicted a 2.9% improvement whereas the lowest tertile predicted a 1.8% decline in FEV1% predicted among women with asthma over 5 years. Conclusions: Participants with asthma have lower PSMD, reflecting greater muscle fat infiltration. Baseline PSMD predicted lung function decline among women with asthma but not men. These data support an important role of metabolic dysfunction in lung function decline.


Assuntos
Asma , Pulmão , Adulto , Humanos , Feminino , Masculino , Adiposidade , Volume Expiratório Forçado , Obesidade , Músculo Esquelético/diagnóstico por imagem
17.
J Allergy Clin Immunol ; 152(4): 841-857, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343842

RESUMO

The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.


Assuntos
Asma , Pólipos Nasais , Transtornos Respiratórios , Rinite , Sinusite , Humanos , Eosinófilos/patologia , Pólipos Nasais/patologia , Remodelação das Vias Aéreas , Rinite/patologia , Asma/patologia , Pulmão/patologia , Sinusite/patologia , Doença Crônica
18.
J Allergy Clin Immunol ; 151(6): 1513-1524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36796454

RESUMO

BACKGROUND: Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE: We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS: Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS: We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS: Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.


Assuntos
Asma , Qualidade de Vida , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/diagnóstico , Células Epiteliais/metabolismo , Corticosteroides/uso terapêutico
19.
J Allergy Clin Immunol ; 152(1): 94-106.e12, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893862

RESUMO

BACKGROUND: Type 1 (T1) inflammation (marked by IFN-γ expression) is now consistently identified in subsets of asthma cohorts, but how it contributes to disease remains unclear. OBJECTIVE: We sought to understand the role of CCL5 in asthmatic T1 inflammation and how it interacts with both T1 and type 2 (T2) inflammation. METHODS: CCL5, CXCL9, and CXCL10 messenger RNA expression from sputum bulk RNA sequencing, as well as clinical and inflammatory data were obtained from the Severe Asthma Research Program III (SARP III). CCL5 and IFNG expression from bronchoalveolar lavage cell bulk RNA sequencing was obtained from the Immune Mechanisms in Severe Asthma (IMSA) cohort and expression related to previously identified immune cell profiles. The role of CCL5 in tissue-resident memory T-cell (TRM) reactivation was evaluated in a T1high murine severe asthma model. RESULTS: Sputum CCL5 expression strongly correlated with T1 chemokines (P < .001 for CXCL9 and CXCL10), consistent with a role in T1 inflammation. CCL5high participants had greater fractional exhaled nitric oxide (P = .009), blood eosinophils (P < .001), and sputum eosinophils (P = .001) in addition to sputum neutrophils (P = .001). Increased CCL5 bronchoalveolar lavage expression was unique to a previously described T1high/T2variable/lymphocytic patient group in the IMSA cohort, with IFNG trending with worsening lung obstruction only in this group (P = .083). In a murine model, high expression of the CCL5 receptor CCR5 was observed in TRMs and was consistent with a T1 signature. A role for CCL5 in TRM activation was supported by the ability of the CCR5 inhibitor maraviroc to blunt reactivation. CONCLUSION: CCL5 appears to contribute to TRM-related T1 neutrophilic inflammation in asthma while paradoxically also correlating with T2 inflammation and with sputum eosinophilia.


Assuntos
Asma , Quimiocina CCL5 , Animais , Humanos , Camundongos , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Eosinófilos , Inflamação/metabolismo , Neutrófilos , Escarro
20.
NMR Biomed ; 36(8): e4923, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914278

RESUMO

Hyperpolarized 129 Xe MRI (Xe-MRI) is increasingly used to image the structure and function of the lungs. Because 129 Xe imaging can provide multiple contrasts (ventilation, alveolar airspace size, and gas exchange), imaging often occurs over several breath-holds, which increases the time, expense, and patient burden of scans. We propose an imaging sequence that can be used to acquire Xe-MRI gas exchange and high-quality ventilation images within a single, approximately 10 s, breath-hold. This method uses a radial one-point Dixon approach to sample dissolved 129 Xe signal, which is interleaved with a 3D spiral ("FLORET") encoding pattern for gaseous 129 Xe. Thus, ventilation images are obtained at higher nominal spatial resolution (4.2 × 4.2 × 4.2 mm3 ) compared with gas-exchange images (6.25 × 6.25 × 6.25 mm3 ), both competitive with current standards within the Xe-MRI field. Moreover, the short 10 s Xe-MRI acquisition time allows for 1 H "anatomic" images used for thoracic cavity masking to be acquired within the same breath-hold for a total scan time of about 14 s. Images were acquired using this single-breath method in 11 volunteers (N = 4 healthy, N = 7 post-acute COVID). For 11 of these participants, a separate breath-hold was used to acquire a "dedicated" ventilation scan and five had an additional "dedicated" gas exchange scan. The images acquired using the single-breath protocol were compared with those from dedicated scans using Bland-Altman analysis, intraclass correlation (ICC), structural similarity, peak signal-to-noise ratio, Dice coefficients, and average distance. Imaging markers from the single-breath protocol showed high correlation with dedicated scans (ventilation defect percent, ICC = 0.77, p = 0.01; membrane/gas, ICC = 0.97, p = 0.001; red blood cell/gas, ICC = 0.99, p < 0.001). Images showed good qualitative and quantitative regional agreement. This single-breath protocol enables the collection of essential Xe-MRI information within one breath-hold, simplifying scanning sessions and reducing costs associated with Xe-MRI.


Assuntos
COVID-19 , Isótopos de Xenônio , Humanos , Pulmão/diagnóstico por imagem , Respiração , Suspensão da Respiração , Imageamento por Ressonância Magnética/métodos , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA