Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
2.
Epidemics ; 47: 100759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452455

RESUMO

Over the past several years, the emergence of novel SARS-CoV-2 variants has led to multiple waves of increased COVID-19 incidence. When the Omicron variant emerged, there was considerable concern about its potential impact in the winter of 2021-2022 due to its increased fitness. However, there was also considerable uncertainty regarding its likely impact due to questions about its relative transmissibility, severity, and degree of immune escape. We sought to evaluate the ability of an agent-based model to forecast incidence in the context of this emerging pathogen variant. To project COVID-19 cases and deaths in Indiana, we calibrated our model to COVID-19 hospitalizations, deaths, and test-positivity rates through November 2021, and then projected COVID-19 incidence through April 2022 under four different scenarios that covered the plausible ranges of Omicron's severity, transmissibility, and degree of immune escape. Our initial projections from December 2021 through March 2022 indicated that under a pessimistic scenario with high disease severity, the peak in weekly COVID-19 deaths in Indiana would be larger than the previous peak in December 2020. However, retrospective analyses indicate that Omicron's severity was closer to the optimistic scenario, and even though cases and hospitalizations reached a new peak, fewer deaths occurred than during the previous peak. According to our results, Omicron's rapid spread was consistent with a combination of higher transmissibility and immune escape relative to earlier variants. Our updated projections starting in January 2022 accurately predicted that cases would peak in mid-January and decline rapidly over the next several months. The performance of our projections shows that following the emergence of a new pathogen variant, models can help quantify the potential range of outbreak magnitudes and trajectories. Agent-based models are particularly useful in these scenarios because they can efficiently track individual vaccination and infection histories with multiple variants with varying degrees of cross-protection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/imunologia , COVID-19/mortalidade , Indiana/epidemiologia , Incerteza , Previsões , Surtos de Doenças , Incidência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA