RESUMO
The architectural heritage of the 20th century is affected by several conservation problems in terms of material preservation, structural analysis, and reuse. Among these, material degradation and durability issues are the ones that have the most effect on the health state and, consequently, the survival of the constructions of the period. In order to conduct a proper analysis for preservation purposes, an interdisciplinary approach is necessary. The parabolic arch in Morano sul Po (Italy) is a reinforced concrete landmark in the Casale Monferrato area and is related to the industrial vocation of the territory, which is indissolubly linked to the cement production chain. The present paper reports the results of a non-destructive test campaign by a Politecnico di Torino multidisciplinary group, which combined acquisitions using different methods. The paper highlights the importance of a structured procedure to integrate different information coming from different techniques. The aim was to assess the health state of the structure and define the best procedures for building an information system based on the as-built modeling strategy, which could serve as the basis to provide conservation guidelines.
RESUMO
Fibre-reinforced polymer composites in general, and especially glass fibre-reinforced polymer (GFRP), have increasingly been used in recent decades in construction. The advantages of GFRP as an alternative construction material are its high strength-to-weight ratio, corrosive resistance, high durability, and ease of installation. The main purpose of this study is to evaluate the response of GFRP under dynamic conditions (more specifically, under seismic loads) and to compare the performance of this composite material with that of two traditional building materials: reinforced concrete and structural steel. To this aim, a finite element analysis is carried out on a two-dimensional frame modelled with steel, reinforced concrete (RC), or GFRP pultruded materials and subjected to a seismic input. The dynamic response of the structure is evaluated for the three building materials in terms of displacements, inter-storey drift, base shear, and stress. The results show a good performance of the GFRP frame, with stress distribution and displacements halfway between those of RC and steel. Most importantly, the GFRP frame outperforms the other materials in terms of reduced weight and, thus, base shear (-40% compared to steel and -88.5% compared to RC).
RESUMO
One key issue in the Structural Health Monitoring (SHM) of buildings is the influence of the soil on the dynamics of the system. The lack of accurate information on soil-structure interaction represents a source of significant uncertainty and generates difficulties in assessing the state of structural health. In this respect, satellite data could represent a valuable tool for soil knowledge. This paper presents the first study of satellite data coming from the environmental Copernicus program of the European Space Agency (ESA) for the alternative application in the field of SHM. In particular, Land Surface Temperature (LST) and Soil Water Index (SWI) data are elected to study surface temperature and moisture condition of the soil. Once examined and processed, these records have been statistically analyzed, crossed with on-site experimental quantities (natural frequencies and environmental variations), and given as input to a Finite Element (FE) model. The final goal is to understand the actual structural behavior, but also to monitor the evolution of the dynamic parameters for the purposes of structural and seismic monitoring. The largest oval masonry dome in the world was chosen as a prominent case study to demonstrate this novel approach to SHM.
RESUMO
Novel metamaterial concepts can be used to economically reduce flexural vibrations in coupled pipe-rack systems. Here, we model pipe on flexible supports as periodic systems and formulate dispersion relations using Floquet-Bloch theory which is verified by a finite element model. Owing to the flexibility of the coupled system, a narrow pass band is created in low frequency regime, in contrast to the case of pipe without any rack. Two types of vibration reduction mechanisms are investigated for pipe with different supports, i.e. simple and elastic support. In order to tune the band gap behaviour, lateral localized resonators are attached at the centre of each unit cell; conversely, the lateral distributed resonators are realized with a secondary pipe existing in the system. The results reveal that both Bragg and resonance type band gaps coexist in piping systems due to the presence of spatial periodicity and local resonance. Although, the response attenuation of a coupled pipe-rack system with distributed resonators is found to be little lower than the case with the localized one, the relatively low stiffness and damping values lead to cheaper solutions. Therefore, the proposed concept of distributed resonators represents a promising application in piping, power and process industries.