Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 6839, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477957

RESUMO

Mammals are able to adapt to high altitude (HA) if appropriate acclimation occurs. However, specific occupations (professional climbers, pilots, astronauts and other) can be exposed to HA without acclimation and be at a higher risk of brain consequences. In particular, US Air Force U2-pilots have been shown to develop white matter hyperintensities (WMH) on MRI. Whether WMH are due to hypoxia or hypobaria effects is not understood. We compared swine brains exposed to 5000 feet (1524 m) above sea level (SL) with 21% fraction inspired O2 (FiO2) (Control group [C]; n = 5) vs. 30,000 feet (9144 m) above SL with 100% FiO2 group (hypobaric group [HYPOBAR]; n = 6). We performed neuropathologic assessments, molecular analyses, immunohistochemistry (IHC), Western Blotting (WB), and stereology analyses to detect differences between HYPOBAR vs. Controls. Increased neuronal insoluble hyperphosphorylated-Tau (pTau) accumulation was observed across different brain regions, at histological level, in the HYPOBAR vs. Controls. Stereology-based cell counting demonstrated a significant difference (p < 0.01) in pTau positive neurons between HYPOBAR and C in the Hippocampus. Higher levels of soluble pTau in the Hippocampus of HYPOBAR vs. Controls were also detected by WB analyses. Additionally, WB demonstrated an increase of IBA-1 in the Cerebellum and a decrease of myelin basic protein (MBP) in the Hippocampus and Cerebellum of HYPOBAR vs. Controls. These findings illustrate, for the first time, changes occurring in large mammalian brains after exposure to nonhypoxic-hypobaria and open new pathophysiological views on the interaction among hypobaria, pTau accumulation, neuroinflammation, and myelination in large mammals exposed to HA.


Assuntos
Altitude , Doenças Neuroinflamatórias , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Mamíferos , Bainha de Mielina , Suínos
2.
bioRxiv ; 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33948587

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.

3.
Cell Rep ; 37(3): 109839, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34624208

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Assuntos
COVID-19/genética , COVID-19/imunologia , MicroRNAs/genética , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antivirais/farmacologia , Biomarcadores/metabolismo , Cricetinae , Feminino , Furões , Regulação da Expressão Gênica , Glicólise , Voluntários Saudáveis , Humanos , Hipóxia , Inflamação , Masculino , Camundongos , Pessoa de Meia-Idade , Proteômica/métodos , Curva ROC , Ratos , Tratamento Farmacológico da COVID-19
4.
Brain Res ; 1678: 322-329, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108817

RESUMO

A single acute low-dose methylene blue (MB), an FDA-grandfathered drug, has been shown to ameliorate behavioral deficits and reduces MRI-defined infarct volume in experimental ischemic stroke when administered intravenously or intraperitoneally. The efficacy of chronic MB treatment in ischemic stroke remains unknown. In a randomized, double-blinded and vehicle-controlled design, we investigated the efficacy of chronic oral MB administration in ischemic stroke longitudinally up to 60 days post injury using MRI and behavioral tests, with end-point histology. The major findings were chronic oral MB treatment, compared to vehicle, i) improves functional behavioral outcomes starting on day 7 and up to 60 days, ii) reduces MRI-defined total lesion volumes from day 14 and up to 60 days where some initial abnormal MRI-defined core and perfusion-diffusion mismatch were salvaged, iii) reduces white-matter damage, iv) gray matter and white matter damages are consistent with Nissl stains and Black Gold stain histology. These findings provide further evidence that long-term oral administration of low-dose MB is safe and has positive therapeutic effects in chronic ischemic stroke.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Azul de Metileno/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Administração Oral , Análise de Variância , Animais , Modelos Animais de Doenças , Método Duplo-Cego , Processamento de Imagem Assistida por Computador , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Reperfusão , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Coloração pela Prata , Marcadores de Spin
5.
J Cereb Blood Flow Metab ; 37(8): 2706-2715, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27742887

RESUMO

Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (Kw) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using Kw magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group Kw magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal Kw. Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, Kw magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal Kw showed substantial overlap with regions of hyperintense T2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The Kw values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min-1, respectively (P < 0.05, n = 9). Kw magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. Kw magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.


Assuntos
Barreira Hematoencefálica , Permeabilidade Capilar/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Ataque Isquêmico Transitório , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/fisiopatologia , Meios de Contraste , Modelos Animais de Doenças , Azul Evans , Ataque Isquêmico Transitório/diagnóstico por imagem , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Perfusão , Ratos Sprague-Dawley , Marcadores de Spin
6.
Stem Cell Res Ther ; 8(1): 74, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28330501

RESUMO

BACKGROUND: Human umbilical cord blood (hUCB) cell therapy is a promising treatment for ischemic stroke. The effects of hyperacute stem cell transplantation on cerebrovascular function in ischemic stroke are, however, not well understood. This study evaluated the effects of hyperacute intraarterial transplantation of hUCB mononuclear cells (MNCs) on cerebrovascular function in stroke rats using serial magnetic resonance imaging (MRI). METHODS: HUCB MNCs or vehicle were administered to stroke rats via the internal carotid artery immediately after reperfusion at 60 min following ischemia onset. Lesion volumes were longitudinally evaluated by MRI on days 0, 2, 14, and 28 after stroke, accompanied by behavioral tests. Cerebral blood flow (CBF) and cerebrovascular reactivity were measured by perfusion MRI and CO2 functional MRI (fMRI) at 28 days post-stroke; corresponding vascular morphological changes were also detected by immunohistology in the same animals. RESULTS: We found that CBF to the stroke-affected region at 28 days was improved (normalized CBF value: 1.41 ± 0.30 versus 0.49 ± 0.07) by intraarterial transplantation of hUCB MNCs in the hyperacute stroke phase, compared to vehicle control. Cerebrovascular reactivity within the stroke-affected area, measured by CBF fMRI, was also increased (35.2 ± 3.5% versus 12.8 ± 4.3%), as well as the corresponding cerebrovascular density. Some engrafted cells appeared with microvascular-like morphology and stained positive for von Willebrand Factor (an endothelial cell marker), suggesting they differentiated into endothelial cells. Some engrafted cells also connected to host endothelial cells, suggesting they interacted with the host vasculature. Compared to the vehicle group, infarct volume at 28 days in the stem cell treated group was significantly smaller (160.9 ± 15.7 versus 231.2 ± 16.0 mm3); behavioral deficits were also markedly reduced by stem cell treatment at day 28 (19.5 ± 1.0% versus 30.7 ± 4.7% on the foot fault test; 68.2 ± 4.6% versus 86.6 ± 5.8% on the cylinder test). More tissue within initial perfusion-diffusion mismatch was rescued in the treatment group. CONCLUSIONS: Intraarterial hUCB MNC transplantation during the hyperacute phase of ischemic stroke improved cerebrovascular function and reduced behavioral deficits and infarct volume.


Assuntos
Isquemia Encefálica/terapia , Células Endoteliais/citologia , Sangue Fetal/citologia , Leucócitos Mononucleares/transplante , Acidente Vascular Cerebral/terapia , Animais , Biomarcadores/metabolismo , Velocidade do Fluxo Sanguíneo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Artéria Carótida Interna , Diferenciação Celular , Separação Celular , Circulação Cerebrovascular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Sangue Fetal/metabolismo , Expressão Gênica , Humanos , Injeções Intra-Arteriais , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Equilíbrio Postural/fisiologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Transplante Heterólogo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA