Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 17(10): 1176-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548431

RESUMO

Inflammasomes are positioned to rapidly escalate the intensity of inflammation by activating interleukin (IL)-1ß, IL-18 and cell death by pyroptosis. However, negative regulation of inflammasomes remains poorly understood, as is the signaling cascade that dampens inflammasome activity. We found that rapid NLRP3 inflammasome activation was directly inhibited by protein kinase A (PKA), which was induced by prostaglandin E2 (PGE2) signaling via the PGE2 receptor E-prostanoid 4 (EP4). PKA directly phosphorylated the cytoplasmic receptor NLRP3 and attenuated its ATPase function. We found that Ser295 in human NLRP3 was critical for rapid inhibition and PKA phosphorylation. Mutations in NLRP3-encoding residues adjacent to Ser295 have been linked to the inflammatory disease CAPS (cryopyrin-associated periodic syndromes). NLRP3-S295A phenocopied the human CAPS mutants. These data suggest that negative regulation at Ser295 is critical for restraining the NLRP3 inflammasome and identify a molecular basis for CAPS-associated NLRP3 mutations.


Assuntos
Síndromes Periódicas Associadas à Criopirina/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inflamassomos/metabolismo , Monócitos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Síndromes Periódicas Associadas à Criopirina/genética , Dinoprostona/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fenótipo , Fosforilação/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Serina/genética , Transdução de Sinais/genética
2.
J Biol Chem ; 300(3): 105675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272223

RESUMO

The O-glycoprotein Mucin-2 (MUC2) forms the protective colon mucus layer. While animal models have demonstrated the importance of Muc2, few studies have explored human MUC2 in similar depth. Recent studies have revealed that secreted MUC2 is bound to human feces. We hypothesized human fecal MUC2 (HF-MUC2) was accessible for purification and downstream structural and functional characterization. We tested this via histologic and quantitative imaging on human fecal sections; extraction from feces for proteomic and O-glycomic characterization; and functional studies via growth and metabolic assays in vitro. Quantitative imaging of solid fecal sections showed a continuous mucus layer of varying thickness along human fecal sections with barrier functions intact. Lectin profiling showed HF-MUC2 bound several lectins but was weak to absent for Ulex europaeus 1 (α1,2 fucose-binding) and Sambucus nigra agglutinin (α2,6 sialic acid-binding), and did not have obvious b1/b2 barrier layers. HF-MUC2 separated by electrophoresis showed high molecular weight glycoprotein bands (∼1-2 MDa). Proteomics and Western analysis confirmed the enrichment of MUC2 and potential MUC2-associated proteins in HF-MUC2 extracts. MUC2 O-glycomics revealed diverse fucosylation, moderate sialylation, and little sulfation versus porcine colonic MUC2 and murine fecal Muc2. O-glycans were functional and supported the growth of Bacteroides thetaiotaomicron (B. theta) and short-chain fatty acid (SCFA) production in vitro. MUC2 could be similarly analyzed from inflammatory bowel disease stools, which displayed an altered glycomic profile and differential growth and SCFA production by B. theta versus healthy samples. These studies describe a new non-invasive platform for human MUC2 characterization in health and disease.


Assuntos
Colo , Fezes , Proteômica , Animais , Humanos , Camundongos , Colo/metabolismo , Glicoproteínas/metabolismo , Mucosa Intestinal/metabolismo , Mucina-2/genética , Mucina-2/metabolismo , Muco/metabolismo , Suínos , Masculino , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal
3.
Gastroenterology ; 164(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183751

RESUMO

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Assuntos
Frutanos , Doenças Inflamatórias Intestinais , Adulto , Humanos , Leucócitos Mononucleares , Intestinos , Fibras na Dieta , Inflamação
4.
PLoS Pathog ; 18(3): e1010415, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35303042

RESUMO

A hallmark of Entamoeba histolytica (Eh) invasion in the gut is acute inflammation dominated by the secretion of pro-inflammatory cytokines TNF-α and IL-1ß. This is initiated when Eh in contact with macrophages in the lamina propria activates caspase-1 by recruiting the NLRP3 inflammasome complex in a Gal-lectin and EhCP-A5-dependent manner resulting in the maturation and secretion of IL-1ß and IL-18. Here, we interrogated the requirements and mechanisms for Eh-induced caspase-4/1 activation in the cleavage of gasdermin D (GSDMD) to regulate bioactive IL-1ß release in the absence of cell death in human macrophages. Unlike caspase-1, caspase-4 activation occurred as early as 10 min that was dependent on Eh Gal-lectin and EhCP-A5 binding to macrophages. By utilizing CRISPR-Cas9 gene edited CASP4/1, NLRP3 KO and ASC-def cells, caspase-4 activation was found to be independent of the canonical NLRP3 inflammasomes. In CRISPR-Cas9 gene edited CASP1 macrophages, caspase-4 activation was significantly up regulated that enhanced the enzymatic cleavage of GSDMD at the same cleavage site as caspase-1 to induce GSDMD pore formation and sustained bioactive IL-1ß secretion. Eh-induced IL-1ß secretion was independent of pyroptosis as revealed by pharmacological blockade of GSDMD pore formation and in CRISPR-Cas9 gene edited GSDMD KO macrophages. This was in marked contrast to the potent positive control, lipopolysaccharide + Nigericin that induced high expression of predominantly caspase-1 that efficiently cleaved GSDMD with high IL-1ß secretion/release associated with massive cell pyroptosis. These results reveal that Eh triggered "hyperactivated macrophages" allowed caspase-4 dependent cleavage of GSDMD and IL-1ß secretion to occur in the absence of pyroptosis that may play an important role in disease pathogenesis.


Assuntos
Entamoeba histolytica , Caspase 1/genética , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Entamoeba histolytica/metabolismo , Humanos , Interleucina-1beta , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose
5.
PLoS Pathog ; 17(9): e1009936, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499701

RESUMO

While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages.


Assuntos
Caspase 1/metabolismo , Proteínas Culina/metabolismo , Entamebíase/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Animais , Entamoeba histolytica/imunologia , Entamoeba histolytica/metabolismo , Entamebíase/imunologia , Humanos , Camundongos , Transdução de Sinais/fisiologia
6.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G489-G499, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494458

RESUMO

Goblet cells are specialized for the production and secretion of MUC2 glycoproteins that forms a thick layer covering the mucosal epithelium as a protective barrier against noxious substances and invading microbes. High MUC2 mucin biosynthesis induces endoplasmic reticulum (ER) stress and apoptosis in goblet cells during inflammatory and infectious diseases. Autophagy is an intracellular degradation process required for maintenance of intestinal homeostasis. In this study, we hypothesized that autophagy was triggered during high MUC2 mucin biosynthesis from colonic goblet cells to cope with metabolic stress. To interrogate this, we analyzed the autophagy process in high MUC2-producing human HT29-H and a clone HT29-L silenced for MUC2 expression by lentivirus-mediated shRNA, and WT and CRISPR/Cas9 MUC2 KO LS174T cells. Autophagy was constitutively increased in high MUC2-producing cells characterized by elevated pULK1S555 expression and increased numbers of autophagosomes as compared with MUC2 silenced or gene edited cells. Similarly, colonoids from Muc2+/+ but not Muc2-/- littermates differentiated into goblet cells showed increased autophagy. IL-22 treatment corrected misfolded MUC2 protein and alleviated the autophagy process in LS174T cells. This study highlights that autophagy plays an essential role in goblet cells to survive during high mucin biosynthesis by regulating cellular homeostasis.NEW & NOTEWORTHY It is unclear how colonic goblet cells survive by producing high output MUC2 mucin that triggers endoplasmic stress by misfolded MUC2 proteins. To cope with metabolic stress, we interrogated if autophagy played an essential role in regulating cellular homeostasis. Indeed, high MUC2 mucin biosynthesis dysregulated autophagy processes that was regulated by IL-22 to maintain gut barrier innate host defenses.


Assuntos
Autofagia , Colo/metabolismo , Estresse do Retículo Endoplasmático , Metabolismo Energético , Células Caliciformes/metabolismo , Mucina-2/biossíntese , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Colo/efeitos dos fármacos , Colo/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/ultraestrutura , Células HT29 , Humanos , Interleucinas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-2/genética , Fosforilação , Dobramento de Proteína , Transdução de Sinais , Interleucina 22
7.
PLoS Pathog ; 14(11): e1007466, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500860

RESUMO

Amebiasis is caused by the protozoan parasite Entamoeba histolytica (Eh), a potentially fatal disease occurring mainly in developing countries. How Eh interacts with innate host factors in the gut is poorly understood. Eh resides and feed in/on the outer colonic mucus layer and thus share an ecological niche with indigenous microbiota. As gut microbiota regulates innate immune responses, in this study we characterized the cooperative roles that microbiota and the mucus layer play in Eh-induced pro-inflammatory responses in the colon. To study this, we used antibiotics treated and non-treated specific pathogen free Muc2-/- and Muc2+/+ littermates and germ-free mice inoculated with Eh in colonic loops as a short infection model. In antibiotic treated Muc2-/- and Muc2+/+ littermates, Eh elicited robust mucus and water secretions, enhanced pro-inflammatory cytokines and chemokine expression with elevated MPO activity and higher pathology scores as compared to the modest response observed in non-antibiotic treated littermates. Host responses were microbiota specific as mucus secretion and pro-inflammatory responses were attenuated following homologous fecal microbial transplants in antibiotic-treated Muc2+/+ quantified by secretion of 3H-glucosamine newly synthesized mucin, Muc2 mucin immunostaining and immunohistochemistry. Eh-elicited pro-inflammatory responses and suppressed goblet cell transcription factor Math1 as revealed by in vivo imaging of Eh-colonic loops in Math1GFP mice, and in vitro using Eh-stimulated LS174T human colonic goblet cells. Eh in colonic loops increased bacterial translocation of bioluminescent E. coli and indigenous bacteria quantified by FISH and quantitative PCR. In germ-free animals, Eh-induced mucus/water secretory responses, but acute pro-inflammatory responses and MPO activity were severely impaired, allowing the parasite to bind to and disrupt mucosal epithelial cells. These findings have identified key roles for intestinal microbiota and mucus in regulating innate host defenses against Eh, and implicate dysbiosis as a risk factor for amebiasis that leads to exacerbated immune responses to cause life-threatening disease.


Assuntos
Entamoeba histolytica/metabolismo , Microbioma Gastrointestinal/imunologia , Mucina-2/imunologia , Animais , Linhagem Celular , Colo/metabolismo , Colo/patologia , Entamoeba histolytica/imunologia , Entamoeba histolytica/patogenicidade , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/patologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Mucina-1 , Mucinas/metabolismo
8.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527129

RESUMO

Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1ß, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.


Assuntos
Entamoeba histolytica/patogenicidade , Entamebíase/patologia , Escherichia coli Enteropatogênica/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Células CACO-2 , Linhagem Celular , Cricetinae , Cisteína Proteases/metabolismo , Citocinas/metabolismo , Entamoeba histolytica/microbiologia , Células HT29 , Humanos , Inflamação , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Fatores de Virulência/biossíntese
9.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427448

RESUMO

Entamoeba histolytica is an anaerobic parasitic protozoan and the causative agent of amoebiasis. E. histolytica expresses proteins that are structurally homologous to human proteins and uses them as virulence factors. We have previously shown that E. histolytica binds exogenous interferon gamma (IFN-γ) on its surface, and in this study, we explored whether exogenous IFN-γ could modulate parasite virulence. We identified an IFN-γ receptor-like protein on the surface of E. histolytica trophozoites by using anti-IFN-γ receptor 1 (IFN-γR1) antibody and performing immunofluorescence, Western blot, protein sequencing, and in silico analyses. Coupling of human IFN-γ to the IFN-γ receptor-like protein on live E. histolytica trophozoites significantly upregulated the expression of E. histolytica cysteine protease A1 (EhCP-A1), EhCP-A2, EhCP-A4, EhCP-A5, amebapore A (APA), cyclooxygenase 1 (Cox-1), Gal-lectin (Hgl), and peroxiredoxin (Prx) in a time-dependent fashion. IFN-γ signaling via the IFN-γ receptor-like protein enhanced E. histolytica's erythrophagocytosis of human red blood cells, which was abrogated by the STAT1 inhibitor fludarabine. Exogenous IFN-γ enhanced chemotaxis of E. histolytica, its killing of Caco-2 colonic and Hep G2 liver cells, and amebic liver abscess formation in hamsters. These results demonstrate that E. histolytica expresses a surface IFN-γ receptor-like protein that is functional and may play a role in disease pathogenesis and/or immune evasion.


Assuntos
Entamoeba histolytica/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Interferon/química , Amebíase/imunologia , Amebíase/parasitologia , Animais , Células CACO-2 , Sobrevivência Celular , Cricetinae , Células Hep G2 , Humanos , Interferon gama/farmacologia , Masculino , Fagocitose , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Receptor de Interferon gama
10.
PLoS Pathog ; 13(8): e1006592, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28837696

RESUMO

Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5ß1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1ß release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1ß. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses.


Assuntos
Citoesqueleto/imunologia , Entamebíase/imunologia , Interações Hospedeiro-Parasita/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/parasitologia , Animais , Western Blotting , Linhagem Celular , Entamoeba histolytica/imunologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal
11.
Am J Pathol ; 188(9): 2025-2041, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935164

RESUMO

Intestinal epithelial cell wound healing involves cell migration, proliferation, and differentiation. Although numerous studies have analyzed the migration of absorptive epithelial cells during wound healing, it remains unclear how goblet cells restitute and how MUC2 mucin production affects this process. In this study, we examined the role of high MUC2 production in goblet cell migration during wound healing and demonstrated that during high MUC2 output, goblet cells migrated slower because of impaired production of wound healing factors and endoplasmic reticulum (ER) stress. Two goblet cell lines, HT29-H and HT29-L, that produced high and low MUC2 mucin, respectively, were used. HT29-L healed wounds faster than HT29-H cells by producing significantly higher amounts of fibroblast growth factor (FGF) 1, FGF2, vascular endothelial growth factor-C, and matrix metallopeptidase 1. Predictably, treatment of HT29-H cells with recombinant FGF2 significantly enhanced migration and wound healing. High MUC2 biosynthesis in HT29-H cells induced ER stress and delayed migration that was abrogated by inhibiting ER stress with tauroursodeoxycholic acid and IL-22. FGF2- and IL-22-induced wound repair was dependent on STAT1 and STAT3 signaling. During wound healing after dextran sulfate sodium-induced colitis, restitution of Math1M1GFP+ goblet cells occurred earlier in the proximal colon, followed by the middle and then distal colon, where ulceration was severe. We conclude that high MUC2 output during colitis impairs goblet cell migration and wound healing by reducing production of growth factors critical in wound repair.


Assuntos
Colite/patologia , Estresse do Retículo Endoplasmático , Células Caliciformes/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucina-2/metabolismo , Cicatrização , Animais , Movimento Celular , Proliferação de Células , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Células HT29 , Humanos , Camundongos
12.
Am J Pathol ; 188(6): 1354-1373, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545196

RESUMO

MUC2 mucin is a large glycoprotein produced by goblet cells that forms the protective mucus blanket overlying the intestinal epithelium as the first line of innate host defense. High MUC2 production in inflammatory bowel disease and infectious colitis depletes goblet cells and the mucus layer by an unknown mechanism. Herein, we analyzed the effect of high MUC2 biosynthesis on endoplasmic reticulum (ER) stress and apoptosis in goblet cells using a high MUC2-producing human goblet cell line (HT29-H) and an HT29-H clone (HT29-L) silenced for MUC2 expression by lentivirus-mediated shRNA. Goblet cell ER stress and apoptosis were quantified during early onset of dextran sulfate sodium-induced colitis in C57BL/6 and Math1M1GFP mice. Compared with HT29-L and MUC2 nonproducing Caco-2 cells, high MUC2-producing HT29-H cells had significantly increased ER stress and apoptosis after treatment with ER stress-inducing agents. Apoptosis was driven by increased misfolded MUC2 that triggered elevated levels of reactive oxygen species. Correcting MUC2 folding and inhibiting reactive oxygen species alleviated ER stress and rescued cells from apoptosis. During early-onset colitis, mucus hypersecretion caused severe ER stress and apoptosis of goblet cells that preceded absorptive epithelial cell damage. Thus, in gastrointestinal inflammation, high MUC2 biosynthesis and goblet cell apoptosis lead to a dysfunctional epithelial barrier. Enhancing MUC2 folding may help alleviate goblet cell depletion and maintain mucosal integrity.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Células Caliciformes/patologia , Mucina-2/química , Mucina-2/metabolismo , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Células Caliciformes/metabolismo , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/genética
13.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685982

RESUMO

Enteric α-defensins, termed cryptdins (Crps) in mice, and lysozymes secreted by Paneth cells contribute to innate host defense in the ileum. Antimicrobial factors, including lysozymes and ß-defensins, are often embedded in luminal glycosylated colonic Muc2 mucin secreted by goblet cells that form the protective mucus layer critical for gut homeostasis and pathogen invasion. In this study, we investigated ileal innate immunity against Entamoeba histolytica, the causative agent of intestinal amebiasis, by inoculating parasites in closed ileal loops in Muc2+/+ and Muc2-/- littermates and quantifying Paneth cell localization (lysozyme expression) and function (Crp secretion). Relative to Muc2+/+ littermates, Muc2-/- littermates showed a disorganized mislocalization of Paneth cells that was diffusely distributed, with elevated lysozyme secretion in the crypts and on villi in response to E. histolytica Inhibition of E. histolytica Gal/GalNAc lectin (Gal-lectin) binding with exogenous galactose and Entamoeba histolytica cysteine proteinase 5 (EhCP5)-negative E. histolytica had no effect on parasite-induced erratic Paneth cell lysozyme synthesis. Although the basal ileal expression of Crp genes was unaffected in Muc2-/- mice in response to E. histolytica, there was a robust release of proinflammatory cytokines and Crp peptide secretions in luminal exudates that was also present in the colon. Interestingly, E. histolytica-secreted cysteine proteinases cleaved the proregion of Crp4 but not the active form. These findings define Muc2 mucin as an essential component of ileal barrier function that regulates the localization and function of Paneth cells critical for host defense against microbes.


Assuntos
Defensinas/metabolismo , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidade , Mucinas/deficiência , Mucinas/metabolismo , Muramidase/metabolismo , Celulas de Paneth/metabolismo , Animais , Proliferação de Células/fisiologia , Interações Hospedeiro-Parasita , Humanos , Camundongos
14.
PLoS Pathog ; 12(4): e1005579, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27073869

RESUMO

Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh) induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s) responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5) whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvß3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK) and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvß3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS). This study has identified that EhCP5 coupling with goblet cell αvß3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis.


Assuntos
Cisteína Proteases/metabolismo , Disenteria Amebiana/metabolismo , Entamoeba histolytica/patogenicidade , Células Caliciformes/metabolismo , Integrina alfaVbeta3/metabolismo , Mucinas/metabolismo , Animais , Western Blotting , Linhagem Celular , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Disenteria Amebiana/patologia , Ensaio de Imunoadsorção Enzimática , Exocitose , Citometria de Fluxo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Microscopia Confocal , Proteínas de Protozoários/metabolismo , Transdução de Sinais/fisiologia , Virulência/fisiologia , Fatores de Virulência/metabolismo
15.
Am J Pathol ; 187(11): 2486-2498, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28823873

RESUMO

The intestinal mucous layer provides a critical host defense against pathogen exposure and epithelial injury, yet little is known about how enteropathogens may circumvent this physiologic barrier. Giardia duodenalis is a small intestinal parasite responsible for diarrheal disease and chronic postinfectious illness. This study reveals a complex interaction at the surface of epithelial cells, between G. duodenalis and the intestinal mucous layer. Here, we reveal mechanisms whereby G. duodenalis evades and disrupts the first line of host defense by degrading human mucin-2 (MUC2), depleting mucin stores and inducing differential gene expression in the mouse small and large intestines. Human colonic biopsy specimens exposed to G. duodenalis were depleted of mucus, and in vivo mice infected with G. duodenalis had a thinner mucous layer and demonstrated differential Muc2 and Muc5ac mucin gene expression. Infection in Muc2-/- mice elevated trophozoite colonization in the small intestine and impaired weight gain. In vitro, human LS174T goblet-like cells were depleted of mucus and had elevated levels of MUC2 mRNA expression after G. duodenalis exposure. Importantly, the cysteine protease inhibitor E64 prevented mucous degradation, mucin depletion, and the increase in MUC2 expression. This article describes a novel role for Giardia's cysteine proteases in pathogenesis and how Giardia's disruptions of the mucous barrier facilitate bacterial translocation that may contribute to the onset and propagation of disease.


Assuntos
Células Epiteliais/metabolismo , Giardíase/genética , Mucinas/genética , Muco/metabolismo , Animais , Translocação Bacteriana/genética , Cisteína Proteases/metabolismo , Feminino , Giardia lamblia/genética , Giardíase/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Mucinas/metabolismo
16.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069814

RESUMO

Embedded in the colonic mucus are cathelicidins, small cationic peptides secreted by colonic epithelial cells. Humans and mice have one cathelicidin-related antimicrobial peptide (CRAMP) each, LL-37/hCAP-18 and Cramp, respectively, with related structure and functions. Altered production of MUC2 mucin and antimicrobial peptides is characteristic of intestinal amebiasis. The interactions between MUC2 mucin and cathelicidins in conferring innate immunity against Entamoeba histolytica are not well characterized. In this study, we quantified whether MUC2 expression and release could regulate the expression and secretion of cathelicidin LL-37 in colonic epithelial cells and in the colon. The synthesis of LL-37 was enhanced with butyrate (a product of bacterial fermentation) and interleukin-1ß (IL-1ß) (a proinflammatory cytokine in colitis) in the presence of exogenously added purified MUC2. The LL-37 responses to butyrate and IL-1ß were higher in high-MUC2-producing cells than in lentivirus short hairpin RNA (shRNA) MUC2-silenced cells. Activation of cyclic adenylyl cyclase (AMP) and mitogen-activated protein kinase (MAPK) signaling pathways was necessary for the simultaneous expression of MUC2 and cathelicidins. In Muc2 mucin-deficient (Muc2-/-) mice, murine cathelicidin (Cramp) was significantly reduced compared to that in Muc2+/- and Muc2+/+ littermates. E. histolytica-induced acute inflammation in colonic loops stimulated high levels of cathelicidin in Muc2+/+ but not in Muc2-/- littermates. In dextran sodium sulfate (DSS)-induced colitis in Muc2+/+ mice, which depletes the mucus barrier and goblet cell mucin, Cramp expression was significantly enhanced during restitution. These studies demonstrate regulatory mechanisms between MUC2 and cathelicidins in the colonic mucosa where an intact mucus barrier is essential for expression and secretion of cathelicidins in response to E. histolytica- and DSS-induced colitis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Butiratos/metabolismo , Colite/etiologia , Colite/metabolismo , Mucina-2/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular , Colite/patologia , Modelos Animais de Doenças , Entamoeba histolytica , Entamebíase/metabolismo , Entamebíase/parasitologia , Entamebíase/patologia , Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucina-2/genética , RNA Mensageiro/genética , Sulfatos/efeitos adversos , Catelicidinas
17.
Am J Physiol Gastrointest Liver Physiol ; 312(1): G34-G45, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856417

RESUMO

MUC2 mucin is the major glycoprotein in colonic mucus that separates intestinal microbiota from underlying host cells and serves as a food source for some eubacteria. MUC2 deficiency results in impaired epithelial barrier function, imbalance in gut microbiota, and spontaneous colitis. Probiotics have been shown to have a protective effect against colitis. In this study we used Muc2 mucin-deficient (Muc2-/-) and Muc2+/+ littermates to test whether the probiotic mixture VSL#3 requires an intact mucin barrier to exert its beneficial effect. VSL#3 alone reduced basal colonic proinflammatory cytokine levels and improved epithelial barrier function in Muc2-/- animals. Similarly, in dextran sulfate sodium-induced colitis, VSL#3 dampened the proinflammatory chemokines KC, monocyte chemoattractant protein-1, and macrophage inflammatory protein-2 and upregulated the tissue regeneration growth factors transforming growth factor-ß, fibroblast growth factor-1, and vascular endothelial growth factor-A, which accelerated resolution of colitis symptoms in Muc2-/- animals. Importantly, improved colonic health in VSL#3-treated animals was associated with attenuated reactive oxygen species production by peritoneal macrophages, restoration of antimicrobial peptide gene expression in the small intestine, and increased abundance of bacterial commensals in the gut. The beneficial effects of VSL#3 in Muc2-/- animals were mediated by acetate, an important short-chain fatty acid produced by gut bacteria. These studies provide evidence for the first time that VSL#3 can enhance epithelial barrier function by dampening the proinflammatory cytokine and chemokine response, accelerating restitution, and altering commensal microbiota in the absence of a functional mucus barrier. NEW & NOTEWORTHY: It is unclear whether probiotics require an intact mucin barrier to first colonize and/or exert their protective functions. In this study we used mucin-deficient (Muc2-/-) mice to interrogate if the multispecies probiotic mixture VSL#3 could enhance epithelial barrier function. In the absence of a mucus bilayer, VSL#3 dampened proinflammatory and chemokine production, accelerated restitution, and markedly improved gut permeability mediated by the short-chain fatty acid acetate in the colon.


Assuntos
Colo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucina-2/genética , Probióticos/uso terapêutico , Animais , Colo/metabolismo , Colo/patologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Mucina-2/metabolismo , Probióticos/farmacologia
18.
PLoS Pathog ; 11(5): e1004887, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25955828

RESUMO

Entamoeba histolytica (Eh) is an extracellular protozoan parasite of humans that invades the colon to cause life-threatening intestinal and extra-intestinal amebiasis. Colonized Eh is asymptomatic, however, when trophozoites adhere to host cells there is a considerable inflammatory response that is critical in the pathogenesis of amebiasis. The host and/or parasite factors that trigger the inflammatory response to invading Eh are not well understood. We recently identified that Eh adherence to macrophages induces inflammasome activation and in the present study we sought to determine the molecular events upon contact that coordinates this response. Here we report that Eh contact-dependent activation of α5ß1 integrin is critical for activation of the NLRP3 inflammasome. Eh-macrophage contact triggered recruitment of α5ß1 integrin and NLRP3 into the intercellular junction, where α5ß1 integrin underwent activation by an integrin-binding cysteine protease on the parasite surface, termed EhCP5. As a result of its activation, α5ß1 integrin induced ATP release into the extracellular space through opening of pannexin-1 channels that signalled through P2X7 receptors to deliver a critical co-stimulatory signal that activated the NLRP3 inflammasome. Both the cysteine protease activity and integrin-binding domain of EhCP5 were required to trigger α5ß1 integrin that led to ATP release and NLRP3 inflammasome activation. These findings reveal engagement of α5ß1 integrin across the parasite-host junction is a key regulatory step that initiates robust inflammatory responses to Eh. We propose that α5ß1 integrin distinguishes Eh direct contact and functions with NLRP3 as pathogenicity sensor for invasive Eh infection.


Assuntos
Proteínas de Transporte/metabolismo , Entamoeba histolytica/imunologia , Entamebíase/metabolismo , Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Integrina alfa5beta1/agonistas , Macrófagos/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Adesão Celular , Células Cultivadas , Cisteína Proteases/química , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Entamoeba histolytica/fisiologia , Entamebíase/imunologia , Entamebíase/parasitologia , Humanos , Imunidade Inata , Inflamassomos/imunologia , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteólise , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Am J Pathol ; 182(3): 852-65, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357502

RESUMO

Human mucin-2 (MUC-2) is the first line of innate host defense in preventing pathogen-induced epithelial injury. Entamoeba histolytica (Eh) colonizes the mucus layer by binding of the parasite's surface galactose lectin to galactose and N-acetyl-d-galactosamine residues on colonic MUC-2, preventing parasite contact-dependent cytolysis of epithelial cells. We quantified early innate responses to Eh in wild-type and MUC-2-deficient mice (Muc2(-/-)) using closed colonic loops. Eh infection in wild-type but not Muc2(-/-) mice induced a time-dependent increase in (3)H-labeled mucin and nonmucin glycoprotein secretions. Immunohistochemical staining revealed intense MUC-2 secretion, which formed a thick, protective mucus plug overlying the surface epithelium, entrapping Eh. In Muc2(-/-) mice, Eh induced a pronounced time-dependent secretory exudate with increased gross pathology scores and serum albumin leakage. Colonic pathology, secretory responses, and increased proinflammatory cytokine secretions of TNF-α, IFN-γ, and IL-13 correlated with altered expression of the tight junction proteins claudin-2, occludin, and ZO-1. We identified the putative Eh virulence factor that elicits the proinflammatory responses and alters tight junction permeability as Eh cysteine protease A5 (EhCP-A5). The present findings demonstrate that colonic mucins confer both luminal and epithelial barrier functions and that, in the absence of MUC-2, mice are more susceptible to Eh-induced secretory and proinflammatory responses mediated by EhCP-A5.


Assuntos
Entamoeba histolytica/fisiologia , Células Epiteliais/patologia , Células Epiteliais/parasitologia , Mediadores da Inflamação/metabolismo , Mucina-2/deficiência , Junções Íntimas/parasitologia , Animais , Células Sanguíneas/metabolismo , Colo/parasitologia , Colo/patologia , Entamoeba histolytica/patogenicidade , Regulação da Expressão Gênica , Células Caliciformes/parasitologia , Células Caliciformes/patologia , Humanos , Intestinos/parasitologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Permeabilidade , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA