Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(21): e112963, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743772

RESUMO

The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFß, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Eucariotos/metabolismo , Triptofano/metabolismo , Linfócitos T Reguladores
2.
Diabetes Obes Metab ; 26(8): 3429-3438, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38812281

RESUMO

AIM: Fatty acid esters of hydroxy fatty acids (FAHFA) are a class of bioactive lipids with anti-inflammatory, antidiabetic and cardioprotective properties. FAHFA hydrolysis into its fatty acid (FA) and hydroxy fatty acid (HFA) constituents can affect the bioavailability of FAHFA and its subsequent biological effects. We aimed to investigate FAHFA levels and FAHFA hydrolysis activity in children with or without obesity, and in adults with or without coronary artery disease (CAD). MATERIALS AND METHODS: Our study cohort included 20 children without obesity, 40 children with obesity, 10 adults without CAD and 28 adults with CAD. We quantitated plasma levels of four families of FAHFA [palmitic acid hydroxy stearic acid (PAHSA), palmitoleic acid hydroxy stearic acid (POHSA), oleic acid hydroxy stearic acid (OAHSA), stearic acid hydroxy stearic acid] and their corresponding FA and HFA constituents using liquid chromatography-tandem mass spectrometry analysis. Surrogate FAHFA hydrolysis activity was estimated as the FA/FAHFA or HFA/FAHFA ratio. RESULTS: Children with obesity had lower plasma PAHSA (p = .001), OAHSA (p = .006) and total FAHFA (p = .011) levels, and higher surrogate FAHFA hydrolysis activity represented by PA/PAHSA (p = .040) and HSA/OAHSA (p = .025) compared with children without obesity. Adults with CAD and a history of myocardial infarction (MI) had lower POHSA levels (p = .026) and higher PA/PAHSA (p = .041), POA/POHSA (p = .003) and HSA/POHSA (p = .038) compared with those without MI. CONCLUSION: Altered FAHFA metabolism is associated with obesity and MI, and inhibition of FAHFA hydrolysis should be studied further as a possible therapeutic strategy in obesity and MI.


Assuntos
Doença da Artéria Coronariana , Ácidos Graxos , Humanos , Masculino , Feminino , Criança , Doença da Artéria Coronariana/sangue , Adulto , Hidrólise , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Pessoa de Meia-Idade , Adolescente , Ácidos Esteáricos/sangue , Ácidos Esteáricos/metabolismo , Obesidade Infantil/sangue , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Ésteres/sangue , Ácidos Graxos Monoinsaturados/sangue , Obesidade/sangue , Obesidade/complicações , Obesidade/metabolismo , Estudos de Coortes
3.
Br J Clin Pharmacol ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616514

RESUMO

We aimed to address factors contributing to the pharmacokinetic changes of nirmatrelvir/ritonavir in renal impaired (RI) patients and recommend dosing adjustment via a physiologically-based pharmacokinetic (PBPK) modelling approach. A PBPK model of nirmatrelvir/ritonavir was developed via Simcyp® Simulator. Sensitivity analysis of the influence of hepatic CYP3A4 intrinsic clearance and abundance, as well as hepatic non-CYP3A4 metabolism (other human liver microsomes [HLM] CLint) was performed to evaluate the effects of RI on oral clearance of nirmatrelvir. Other HLM CLint, the most sensitive parameter, was adjusted, and the simulated plasma concentration profiles of nirmatrelvir in severe RI subjects were within the therapeutic index of 292-10 000 ng/mL for dosing regimens of loading doses of 300/100 mg followed by 150/100 mg or 75/100 mg twice daily of nirmatrelvir/ritonavir. Considering that nirmatrelvir is available as a 150 mg tablet, we recommend 300/100 mg followed by 150/100 mg twice daily as the dosing regimen to be investigated in severe RI.

4.
J Chem Inf Model ; 64(6): 2058-2067, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38457234

RESUMO

The biochemical basis for substrate dependences in apparent inhibition constant values (Ki) remains unknown. Our study aims to elucidate plausible structural determinants underpinning these observations. In vitro steady-state inhibition assays conducted using human recombinant CYP3A4 enzyme and testosterone substrate revealed that fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and pemigatinib noncompetitively inhibited CYP3A4 with apparent Ki values of 10.2 ± 1.1 and 3.3 ± 0.9 µM, respectively. However, when rivaroxaban was adopted as the probe substrate, there were 2.0- and 3.2-fold decreases in its apparent Ki values. To glean mechanistic insights into this phenomenon, erdafitinib and pemigatinib were docked to allosteric sites in CYP3A4. Subsequently, molecular dynamics (MD) simulations of apo- and holo-CYP3A4 were conducted to investigate the structural changes induced. Comparative structural analyses of representative MD frames extracted by hierarchical clustering revealed that the allosteric inhibition of CYP3A4 by erdafitinib and pemigatinib did not substantially modulate its active site characteristics. In contrast, we discovered that allosteric binding of the FGFR inhibitors reduces the structural flexibility of the F-F' loop region, an important gating mechanism to regulate access of the substrate to the catalytic heme. We surmised that the increased rigidity of the F-F' loop engenders a more constrained entrance to the CYP3A4 active site, which in turn impedes access to the larger rivaroxaban molecule to a greater extent than testosterone and culminates in more potent inhibition of its CYP3A4-mediated metabolism. Our findings suggest a potential mechanism to rationalize probe substrate dependencies in Ki arising from the allosteric noncompetitive inhibition of CYP3A4.


Assuntos
Citocromo P-450 CYP3A , Rivaroxabana , Humanos , Citocromo P-450 CYP3A/metabolismo , Sítio Alostérico , Simulação de Dinâmica Molecular , Testosterona/metabolismo
5.
Amino Acids ; 55(2): 161-171, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36701004

RESUMO

The capacity of buffalo milk proteins to release bioactive peptides was evaluated and novel bioactive peptides were identified. The sequential similarity between buffalo milk proteins and their cow counterparts was analysed. Buffalo milk proteins were simulated to yield theoretical peptides via in silico proteolysis. The potential of selected proteins to release specific bioactive peptides was evaluated by the A value obtained from the BIOPEP-UWM database (Minkiewicz et al. in Int J Mol Sci 20(23):5978, 2019). Buffalo milk protein is a suitable precursor to produce bioactive peptides, particularly dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory peptides. Two novel ACE inhibitory peptides (KPW and RGP) and four potential DPP-IV inhibitory peptides (RGP, KPW, FPK and KFTW) derived from in silico proteolysis of buffalo milk proteins were screened using different integrated bioinformatic approaches (PeptideRanker, Innovagen, peptide-cutter and molecular docking). The Lineweaver-Burk plots showed that KPW (IC50 = 136.28 ± 10.77 µM) and RGP (104.72 ± 8.37 µM) acted as a competitive inhibitor against ACE. Similarly, KFTW (IC50 = 873.92 ± 32.89 µM) was also a competitive inhibitor of DPP-IV, while KPW and FPK (82.52 ± 10.37 and 126.57 ± 8.45 µM, respectively) were mixed-type inhibitors. It should be emphasized that this study does not involve any clinical trial.


Assuntos
Búfalos , Proteínas do Leite , Animais , Feminino , Bovinos , Proteínas do Leite/química , Búfalos/metabolismo , Peptidil Dipeptidase A , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Peptídeos/química
6.
Br J Clin Pharmacol ; 89(6): 1873-1890, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683488

RESUMO

AIMS: Despite potential enzyme- and transporter-mediated drug-drug interactions (DDIs) between dronedarone and rivaroxaban in atrial fibrillation (AF) patients, pharmacokinetic/pharmacodynamic data remain limited to guide clinical practice. We aimed to develop, verify and validate a physiologically based pharmacokinetic (PBPK) model of dronedarone and its major metabolite, N-desbutyldronedarone (NDBD), to prospectively interrogate this clinically relevant DDI in healthy and mild renal impairment populations. METHODS: The middle-out development of our PBPK model combined literature-derived or in-house in vitro data, predicted in silico data and in vivo clinical data. Model verification was performed for intravenous and oral (single and multiple) dosing regimens. Model validation for the accurate prediction of cytochrome P450 (CYP)3A4- and P-glycoprotein-mediated DDI utilized simvastatin and digoxin as respective victim drugs. Rivaroxaban-specific inhibitory parameters of dronedarone and/or NDBD against CYP3A4, CYP2J2, OAT3 and P-glycoprotein were incorporated into the PBPK-DDI model for prospective dronedarone-rivaroxaban DDI simulation. RESULTS: Dronedarone and NDBD PK following clinically relevant doses of 400 mg dronedarone across single and multiple oral dosing were accurately simulated by incorporating effect of auto-inactivation on dose nonlinearities. Following successful model validation, nondose-adjusted rivaroxaban-dronedarone DDI in healthy and mild renal impairment populations revealed simulated rivaroxaban area under the plasma concentration-time curve up to 24 h fold change greater than dose exposure equivalence (0.70-1.43) at 1.65 and 1.84, respectively. Correspondingly, respective major bleeding risk was 4.24 and 4.70% compared with threshold of 4.5% representing contraindicated rivaroxaban-ketoconazole DDI. CONCLUSION: Our PBPK-DDI model predicted clinically significant dronedarone-rivaroxaban DDI in both healthy and mild renal impairment subjects. Greater benefit vs. risk could be achieved with rivaroxaban dose reductions to at least 15 mg in mild renal impairment subjects on concomitant dronedarone and rivaroxaban.


Assuntos
Insuficiência Renal , Rivaroxabana , Humanos , Dronedarona , Rivaroxabana/farmacocinética , Modelos Biológicos , Interações Medicamentosas , Subfamília B de Transportador de Cassetes de Ligação de ATP
7.
Environ Sci Technol ; 57(17): 6825-6834, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37072124

RESUMO

Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life (t1/2) in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its t1/2. Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent t1/2 of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3-3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.


Assuntos
Caprilatos , Fluorocarbonos , Humanos , Toxicocinética , Fluorocarbonos/farmacocinética , Medição de Risco , Proteínas de Membrana Transportadoras , Modelos Biológicos
8.
Cardiovasc Drugs Ther ; 37(3): 605-609, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34705149

RESUMO

PURPOSE: Increased bleeding risk was found associated with concurrent prescription of rivaroxaban and amiodarone. We previously recommended dose adjustment for rivaroxaban utilizing a physiologically based pharmacokinetic (PBPK) modeling approach. Our subsequent in vitro studies discovered the pivotal involvement of human renal organic anion transporter 3 (hOAT3) in the renal secretion of rivaroxaban and the inhibitory potency of amiodarone. This study aimed to redefine the disease-drug-drug interactions (DDDI) between rivaroxaban and amiodarone and update the potential risks. METHODS: Prospective simulations were conducted with updated PBPK models of rivaroxaban and amiodarone incorporating hOAT3-related parameters. RESULTS: Simulations to recapitulate previously explored DDDI in renal impairment showed a higher bleeding tendency in all simulation scenarios after integrating hOAT3-mediated clearance into PBPK models. Further sensitivity analysis revealed that both hOAT3 dysfunction and age could affect the extent of DDDI, and age was shown to have a more pivotal role on rivaroxaban in vivo exposure. When amiodarone was prescribed along with our recommended dose reduction of rivaroxaban to 10 mg in moderate renal impaired elderly people, it could result in persistently higher rivaroxaban peak concentrations at a steady state. To better manage the increased bleeding risk among such a vulnerable population, a dose reduction of rivaroxaban to 2.5 mg twice daily resulted in its acceptable in vivo exposure. CONCLUSION: Close monitoring of bleeding tendency is essential for elderly patients with moderate renal impairment receiving co-prescribed rivaroxaban and amiodarone. Further dose reduction is recommended for rivaroxaban to mitigate this specific DDDI risk.


Assuntos
Amiodarona , Insuficiência Renal , Humanos , Idoso , Rivaroxabana , Amiodarona/efeitos adversos , Rim , Hemorragia/induzido quimicamente
9.
Cardiovasc Drugs Ther ; 37(5): 917-925, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35567727

RESUMO

AIMS: This study attempts to identify predictors associated with bleeding and stroke and systemic embolism (SSE) in Singaporean Asians taking rivaroxaban and apixaban. METHODS: A total of 134 Singaporean patients on either rivaroxaban or apixaban for non-valvular atrial fibrillation were included for this study. Baseline characteristics were recorded at recruitment while bleeding and SSE events were recorded during a 1-year follow-up. Peak and trough drug plasma concentrations were collected based on the dosing interval and pharmacokinetics of the drugs and quantified using high performance liquid chromatography. Characteristics of patients with or without bleeds were compared using relevant statistical tests. Multivariable regression that included covariates with p < 0.1 from an initial univariable regression was performed to analyse predictors that resulted in higher risk of bleeding in patients. RESULTS: Median creatinine clearance (CrCl) was significantly lower in patients on rivaroxaban who experienced bleeds as compared to patients who did not experience bleeds (61.5 vs 70.8 mL/min, p = 0.047), while concomitant simvastatin use was found to be independently associated with a sixfold increased risk of bleeding (adjusted OR = 6.14 (95% CI: 1.18-31.97), p = 0.031) for rivaroxaban after controlling for body mass index, CrCl and having experienced a previous SSE. CONCLUSION: Our findings suggest that concomitant use of simvastatin with rivaroxaban may be associated with bleeding events in an Asian cohort. Further studies using physiologically based pharmacokinetic modelling are required to investigate the drug-drug interactions between these drugs.


Assuntos
Fibrilação Atrial , Hemorragia , Rivaroxabana , Sinvastatina , Acidente Vascular Cerebral , Humanos , Anticoagulantes/efeitos adversos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Estudos de Coortes , Dabigatrana , Hemorragia/induzido quimicamente , Rivaroxabana/efeitos adversos , Rivaroxabana/sangue , Singapura/epidemiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/prevenção & controle , Povo Asiático , Sinvastatina/efeitos adversos , Quimioterapia Combinada , Atorvastatina
10.
Cell Mol Life Sci ; 79(5): 245, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35435504

RESUMO

BACKGROUND: Blastocystis is a common gut protistan parasite in humans and animals worldwide, but its interrelationship with the host gut microbiota and mucosal immune responses remains poorly understood. Different murine models of Blastocystis colonization were used to examine the effect of a common Blastocystis subtype (ST4) on host gut microbial community and adaptive immune system. RESULTS: Blastocystis ST4-colonized normal healthy mice and Rag1-/- mice asymptomatically and was able to alter the microbial community composition, mainly leading to increases in the proportion of Clostridia vadinBB60 group and Lachnospiraceae NK4A136 group, respectively. Blastocystis ST4 colonization promoted T helper 2 (Th2) response defined by interleukin (IL)-5 and IL-13 cytokine production, and T regulatory (Treg) induction from colonic lamina propria in normal healthy mice. Additionally, we observed that Blastocystis ST4 colonization can maintain the stability of bacterial community composition and induce Th2 and Treg immune responses to promote faster recovery from experimentally induced colitis. Furthermore, fecal microbiota transplantation of Blastocystis ST4-altered gut microbiome to colitis mice reduced the severity of colitis, which was associated with increased production of short-chain fat acids (SCFAs) and anti-inflammatory cytokine IL-10. CONCLUSIONS: The data confirm our hypothesis that Blastocystis ST4 is a beneficial commensal, and the beneficial effects of Blastocystis ST4 colonization is mediated through modulating of the host gut bacterial composition, SCFAs production, and Th2 and Treg responses in different murine colonization models.


Assuntos
Blastocystis , Colite , Microbioma Gastrointestinal , Animais , Bactérias , Colite/induzido quimicamente , Citocinas , Modelos Animais de Doenças , Imunidade , Camundongos , Camundongos Endogâmicos C57BL
11.
J Sci Food Agric ; 103(6): 2949-2959, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36221226

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a complex and prevalent metabolic disease that seriously threatens human health. Numerous studies have shown that probiotics as dietary supplements have the potential to prevent and treat T2DM. However, the ability of various strains to improve diabetes symptoms and corresponding mechanisms are different. Thus, mechanistic investigation is required to validate the pharmacology of each probiotic strain for T2DM treatment. Lactobacillus paracasei IMC 502 was originally isolated from Italian elderly human feces and its probiotic attributes have been demonstrated. Here, the antidiabetic pharmacodynamics of L. paracasei IMC 502 on T2DM mice was explored. RESULTS: Lactobacillus paracasei IMC 502 significantly decreased blood glucose, HbA1c and lipid levels, improved insulin resistance and glucose intolerance, regulated the mRNA/protein expression of key hepatic enzymes associated with gluconeogenesis, de novo lipogenesis and PI3K/Akt pathway, and repaired pancreatic and hepatic tissue damage. This probiotic conferred beneficial outcomes in the gut microbiome of diabetic mice, which induced transformation of short-chain fatty acids (SCFAs) and further enhanced the secretion of downstream hormones, and ultimately ameliorated the inflammatory response. CONCLUSION: Lactobacillus paracasei IMC 502 prevents and alleviates T2DM by mediating the gut microbiota-SCFA-hormone/inflammation pathway. © 2022 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Probióticos , Humanos , Camundongos , Animais , Idoso , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases , Probióticos/metabolismo , Inflamação
12.
J Pharmacol Exp Ther ; 382(2): 123-134, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640957

RESUMO

Infigratinib (INF) is a fibroblast growth factor receptor inhibitor that was recently United States Food and Drug Administration-approved for the treatment of advanced or metastatic cholangiocarcinoma. We previously established that INF inhibited and inactivated cytochrome P450 3A4 (CYP3A4). Here, in a follow up to our previous study, we identified for the first time that INF also elicited potent competitive inhibition and mechanism-based inactivation of CYP2J2 with kinetic parameters K i, K I, k inact, and a partition ratio of 1.94 µM, 0.10 µM, 0.026 minute-1, and ∼3, respectively, when rivaroxaban was harnessed as the probe substrate. Inactivation was revealed to exhibit cofactor-dependency and was attenuated by an alternative substrate (astemizole) and direct inhibitor (nilotinib) of CYP2J2. Additionally, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from covalent modification due to the lack of substantial enzyme activity recovery after dialysis and chemical oxidation, as well as the lack of a resolvable Soret band in spectral scans. Glutathione trapping confirmed that the identity of the putative reactive intermediate implicated in the covalent inactivation of both CYP2J2 and CYP3A4 was identical and likely attributable to an electrophilic p-benzoquinonediimine intermediate of INF. Finally, mechanistic static modeling revealed that by integrating the previously arcane inhibition and inactivation kinetic parameters of CYP2J2-mediated rivaroxaban hydroxylation by INF illuminated in this work, together with those previously documented for CYP3A4, a 49% increase in the systemic exposure of rivaroxaban was projected. Our modeling results predicted a potential risk of metabolic drug-drug interactions between the clinically relevant combination of rivaroxaban and INF in the setting of cancer. SIGNIFICANCE STATEMENT: This study reported that INF elicits potent reversible inhibition and mechanism-based inactivation of CYP2J2. Furthermore, static modelling predicted that its coadministration with the direct oral anticoagulant rivaroxaban may potentially culminate in a metabolic drug-drug interaction (DDI) leading to an increased risk of major bleeding. As rivaroxaban is steadily gaining prominence as the anticoagulant of choice in the treatment of cancer-associated venous thromboembolism, the DDI projections reported here are clinically relevant and warrant further investigation via physiologically based pharmacokinetic modelling and simulation.


Assuntos
Citocromo P-450 CYP3A , Rivaroxabana , Anticoagulantes , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Compostos de Fenilureia , Pirimidinas , Rivaroxabana/farmacocinética
13.
Clin Chem ; 68(11): 1436-1448, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175111

RESUMO

BACKGROUND: The continuous introduction of new synthetic cannabinoid (SC) subtypes and analogues remains a major problem worldwide. Recently, a new "OXIZID" generation of SCs surfaced in seized materials across various countries. Hence, there is an impetus to identify urinary biomarkers of the OXIZIDs to detect their abuse. METHODS: We adapted our previously reported two-pronged approach to investigate the metabolite profiles and disposition kinetics of 4 OXIZID analogues, namely, BZO-HEXOXIZID (MDA-19), BZO-POXIZID (5C-MDA-19), 5F-BZO-POXIZID (5F-MDA-19), and BZO-CHMOXIZID (CHM-MDA-19). First, bottom-up in vitro incubation experiments comprising metabolite identification, metabolic stability, and reaction phenotyping were performed using human liver microsomes and recombinant human cytochrome P450 enzymes. Second, top-down analysis of authentic urine samples from drug abusers was performed to corroborate the in vitro findings and establish a panel of urinary biomarkers. RESULTS: A total of 42 to 51 metabolites were detected for each OXIZID, and their major metabolic pathways included N-alkyl and phenyl hydroxylation, oxidative defluorination (for 5F-BZO-POXIZID), oxidation to ketone and carboxylate, amide hydrolysis, and N-dealkylation. The OXIZIDs were metabolically unstable, mainly metabolized by cytochromes P3A4, P3A5, and P2C9, and demonstrated mechanism-based inactivation of cytochrome P3A4. Integrating with the results of 4 authentic urine samples, the parent drug and both N-alkyl and phenyl mono-hydroxylated metabolites of each OXIZID were determined as suitable urinary biomarkers. CONCLUSIONS: Drug enforcement agencies worldwide may apply these biomarkers in routine monitoring procedures to identify abusers and counter the escalation of OXIZID abuse.


Assuntos
Canabinoides , Humanos , Canabinoides/análise , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Hidroxilação , Oxirredução , Biomarcadores/metabolismo
14.
Drug Metab Dispos ; 50(7): 931-941, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512804

RESUMO

Futibatinib (FUT) is a potent inhibitor of fibroblast growth factor receptor (FGFR) 1-4 that is currently under clinical investigation for intrahepatic cholangiocarcinoma. Unlike its predecessors, FUT possesses an acrylamide warhead, which enables it to bind covalently to a free cysteine residue in the FGFR kinase domain. However, it remains uninterrogated if this electrophilic α, ß -unsaturated carbonyl scaffold could also directly or indirectly engender off-target covalent binding to nucleophilic centers on other cellular proteins. Here, we discovered that FUT inactivated both CYP3A isoforms with inactivator concentration at half-maximum inactivation rate constant, maximum inactivation rate constant, and partition ratios of 12.5 and 51.4 µ M, 0.25 and 0.06 minutes-1, and ∼52 and ∼58 for CYP3A4 and CYP3A5, respectively. Along with its time-, concentration-, and cofactor-dependent inhibitory profiles, FUT also exhibited several cardinal features that were consistent with mechanism-based inactivation. Moreover, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from the covalent modification of the cytochrome P450 apoprotein and/or its heme moiety due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation, as well as the absence of the diagnostic Soret peak in spectral analyses. Finally, utilizing glutathione (GSH) trapping and high-resolution mass spectrometry, we illuminated that while the acrylamide moiety in FUT could nonenzymatically conjugate to GSH via Michael addition, it was not implicated in the covalent inactivation of CYP3A. Rather, we surmised that it likely stemmed from the metabolic activation of its acrylamide covalent warhead to a highly electrophilic epoxide intermediate that could covalently modify CYP3A and culminate in its catalytic inactivation. SIGNIFICANCE STATEMENT: In this study, we reported for the first time the inactivation of CYP3A by futibatinib (FUT). Furthermore, using FUT as an exemplary targeted covalent inhibitor, our study revealed the propensity for its acrylamide Michael acceptor moiety to be metabolically activated to a highly electrophilic epoxide. Due to the growing resurgence of covalent inhibitors and the well-established toxicological ramifications associated with epoxides, we advocate that closer scrutiny be adopted when profiling the reactive metabolites of compounds possessing an α, ß -unsaturated carbonyl scaffold.


Assuntos
Citocromo P-450 CYP3A , Compostos de Epóxi , Acrilamida , Ativação Metabólica , Citocromo P-450 CYP3A/metabolismo , Pirazóis , Pirimidinas , Pirróis , Diálise Renal
15.
Drug Metab Dispos ; 50(5): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35153194

RESUMO

We recently established the mechanism-based inactivation (MBI) of cytochrome P450 3A (CYP3A) by the fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and infigratinib. Serendipitously, our preliminary data have also revealed that pemigatinib (PEM), another clinically approved FGFR1-3 inhibitor, similarly elicited time-dependent inhibition of CYP3A. This was rather unexpected, as it was previously purported that PEM did not pose any metabolism-dependent liabilities due to the absence of glutathione-related conjugates in metabolic profiling experiments conducted in human liver microsomes. Here, we confirmed that PEM inhibited both CYP3A isoforms in a time-, concentration-, and cofactor-dependent manner consistent with MBI, with inactivator concentration at half-maximum rate constant, maximum inactivation rate constant, and partition ratio of 8.69 and 11.95 µM, 0.108 and 0.042 min-1, and approximately 44 and approximately 47 for CYP3A4 and CYP3A5, respectively. Although the rate of inactivation was diminished by coincubation with an alternative substrate or direct inhibitor of CYP3A, the inclusion of nucleophilic trapping agents afforded no such protection. Furthermore, the lack of catalytic activity recovery following dialysis and oxidation with potassium ferricyanide coupled with the absence of a spectrally resolvable peak in the Soret region collectively implied that the underlying mechanism of inactivation was not elicited via the formation of pseudo-irreversible metabolite-intermediate complexes. Finally, utilizing cyanide trapping and high-resolution mass spectrometry, we illuminated the direct and sequential oxidative bioactivation of PEM and its major O-desmethylated metabolite at its distal morpholine moiety to reactive iminium ion hard electrophilic species that could covalently inactivate CYP3A via MBI. SIGNIFICANCE STATEMENT: This study reports for the first time the covalent MBI of CYP3A by PEM and deciphered its bioactivation pathway involving the metabolic activation of PEM and its major O-desmethylated metabolite to reactive iminium ion intermediates. Following which, a unique covalent docking methodology was harnessed to unravel the structural and molecular determinants underpinning its inactivation. Findings from this study lay the foundation for future investigation of clinically relevant drug-drug interactions between PEM and concomitant substrates of CYP3A.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Morfolinas , Pirimidinas , Pirróis , Diálise Renal
16.
Br J Clin Pharmacol ; 88(5): 2267-2283, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34837258

RESUMO

AIMS: Rivaroxaban is a viable anticoagulant for the management of cancer-associated venous thromboembolism (CA-VTE). A previously verified physiologically-based pharmacokinetic (PBPK) model of rivaroxaban established how its multiple pathways of elimination via both CYP3A4/2J2-mediated hepatic metabolism and organic anion transporter 3 (OAT3)/P-glycoprotein-mediated renal secretion predisposes rivaroxaban to drug-drug-disease interactions (DDDIs) with clinically relevant protein kinase inhibitors (PKIs). We proposed the application of PBPK modelling to prospectively interrogate clinically significant DDIs between rivaroxaban and PKIs (erlotinib and nilotinib) for dose adjustments in CA-VTE. METHODS: The inhibitory potencies of the PKIs on CYP3A4/2J2-mediated metabolism of rivaroxaban were characterized. Using prototypical OAT3 inhibitor ketoconazole, in vitro OAT3 inhibition assays were optimized to ascertain the in vivo relevance of derived transport inhibitory constants (Ki ). Untested DDDIs between rivaroxaban and erlotinib or nilotinib were simulated. RESULTS: Mechanism-based inactivation (MBI) of CYP3A4-mediated rivaroxaban metabolism by both PKIs and MBI of CYP2J2 by erlotinib were established. The importance of substrate specificity and nonspecific binding to derive OAT3-inhibitory Ki values of ketoconazole and nilotinib for the accurate prediction of interactions was illustrated. When simulated rivaroxaban exposure variations with concomitant erlotinib and nilotinib therapy were evaluated using published dose-exposure equivalence metrics and bleeding risk analyses, dose reductions from 20 to 15 and 10 mg in normal and mild renal dysfunction, respectively, were warranted. CONCLUSION: We established a PBPK-DDDI model to prospectively evaluate clinically relevant interactions between rivaroxaban and PKIs for the safe and efficacious management of CA-VTE.


Assuntos
Neoplasias , Tromboembolia Venosa , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cloridrato de Erlotinib/efeitos adversos , Humanos , Cetoconazol/farmacocinética , Modelos Biológicos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Inibidores de Proteínas Quinases/efeitos adversos , Rivaroxabana , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/etiologia
17.
Biopharm Drug Dispos ; 43(2): 57-65, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088420

RESUMO

Febuxostat is a second-line xanthine oxidase inhibitor that undergoes extensive hepatic metabolism to yield its major acyl-ß-D-glucuronide metabolite (febuxostat AG). It was recently reported that febuxostat inhibited organic anion transporter 3 (OAT3)-mediated uptake of enalaprilat. Here, we investigated the inhibition of febuxostat and febuxostat AG on OAT3 in transfected human embryonic kidney 293 cells. Our transporter inhibition assays confirmed the potent noncompetitive and competitive inhibition of OAT3-mediated estrone-3-sulfate transport by febuxostat and febuxostat AG with corresponding apparent Ki values of 0.55 and 6.11 µM respectively. After accounting for probe substrate-dependency and protein binding effects, mechanistic static modelling with the direct factor Xa anticoagulant rivaroxaban estimated a 1.47-fold increase in its systemic exposure when co-administered with febuxostat based on OAT3 interaction which in turn exacerbates the bleeding risk from baseline for patients with atrial fibrillation by 1.51-fold. Taken together, our results suggested that the concomitant usage of febuxostat with rivaroxaban may potentially culminate in a clinically-significant drug-drug interaction and result in an increased risk of bleeding as a result of its OAT3 inhibition.


Assuntos
Glucuronídeos , Rivaroxabana , Interações Medicamentosas , Febuxostat/farmacologia , Células HEK293 , Humanos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Rivaroxabana/farmacologia
18.
Mol Pharmacol ; 99(4): 266-276, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33436520

RESUMO

Benzbromarone (BBR), a potent uricosuric agent for the management of gout, is known to cause fatal fulminant hepatitis. Although the mechanism of BBR-induced idiosyncratic hepatotoxicity remains unelucidated, cytochrome P450 enzyme-mediated bioactivation of BBR to electrophilic reactive metabolites is commonly regarded as a key molecular initiating event. However, apart from causing aberrant toxicities, reactive metabolites may result in mechanism-based inactivation (MBI) of cytochrome P450. Here, we investigated and confirmed that BBR inactivated CYP3A4 in a time-, concentration-, and NADPH-dependent manner with K I, k inact, and partition ratio of 11.61 µM, 0.10 minutes-1, and 110, respectively. Coincubation with ketoconazole, a competitive inhibitor of CYP3A4, attenuated the MBI of CYP3A4 by BBR, whereas the presence of glutathione and catalase did not confer such protection. The lack of substantial recovery of enzyme activity postdialysis and after oxidation with potassium ferricyanide, combined with the absence of a Soret peak in spectral difference scans, implied that MBI of CYP3A4 by BBR did not occur through the formation of quasi-irreversible metabolite-intermediate complexes. Analysis of the reduced CO-difference spectrum revealed an ∼44% reduction in ferrous-CO binding and hinted that inactivation is mediated via irreversible covalent adduction to both the prosthetic heme moiety and the apoprotein. Finally, our in silico covalent docking analysis further suggested the modulation of substrate binding to CYP3A4 via the covalent adduction of epoxide-derived reactive intermediates of BBR to two key cysteine residues (Cys239 and Cys58) vicinal to the entrance of the orthosteric binding site. SIGNIFICANCE STATEMENT: Although the bioactivation of benzbromarone (BBR) to reactive metabolites has been well characterized, its potential to cause mechanism-based inactivation (MBI) of cytochrome P450 has not been fully investigated. This study reports the MBI of CYP3A4 by BBR via irreversible covalent adduction and develops a unique covalent docking methodology to predict the structural molecular determinants underpinning the inactivation for the first time. These findings lay the groundwork for future investigation of clinically relevant drug-drug interactions implicating BBR and mechanisms of BBR-induced idiosyncratic hepatotoxicity.


Assuntos
Benzobromarona/farmacologia , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Simulação de Acoplamento Molecular/métodos , Relação Dose-Resposta a Droga , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Uricosúricos/farmacologia
19.
Mol Pharmacol ; 100(3): 224-236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34210765

RESUMO

Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5-its highly homologous counterpart-is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F' loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent V max increased and K m decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and ß of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations. SIGNIFICANCE STATEMENT: Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition.


Assuntos
Benzobromarona/química , Inibidores do Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/química , Benzobromarona/metabolismo , Benzobromarona/farmacologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Humanos , Hidroxilação/efeitos dos fármacos , Hidroxilação/fisiologia , Concentração Inibidora 50 , Midazolam/metabolismo , Midazolam/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Rivaroxabana/metabolismo , Rivaroxabana/farmacologia , Testosterona/metabolismo , Testosterona/farmacologia
20.
Clin Chem ; 67(11): 1534-1544, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387654

RESUMO

BACKGROUND: (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-butyl-1H-indazole-3carboxamide (ADB-BUTINACA) is an emerging synthetic cannabinoid that was first identified in Europe in 2019 and entered Singapore's drug scene in January 2020. Due to the unavailable toxicological and metabolic data, there is a need to establish urinary metabolite biomarkers for detection of ADB-BUTINACA consumption and elucidate its biotransformation pathways for rationalizing its toxicological implications. METHODS: We characterized the metabolites of ADB-BUTINACA in human liver microsomes using liquid chromatography Orbitrap mass spectrometry analysis. Enzyme-specific inhibitors and recombinant enzymes were adopted for the reaction phenotyping of ADB-BUTINACA. We further used recombinant enzymes to generate a pool of key metabolites in situ and determined their metabolic stability. By coupling in vitro metabolism and authentic urine analyses, a panel of urinary metabolite biomarkers of ADB-BUTINACA was curated. RESULTS: Fifteen metabolites of ADB-BUTINACA were identified with key biotransformations being hydroxylation, N-debutylation, dihydrodiol formation, and oxidative deamination. Reaction phenotyping established that ADB-BUTINACA was rapidly eliminated via CYP2C19-, CYP3A4-, and CYP3A5-mediated metabolism. Three major monohydroxylated metabolites (M6, M12, and M14) were generated in situ, which demonstrated greater metabolic stability compared to ADB-BUTINACA. Coupling metabolite profiling with urinary analysis, we identified four urinary biomarker metabolites of ADB-BUTINACA: 3 hydroxylated metabolites (M6, M11, and M14) and 1 oxidative deaminated metabolite (M15). CONCLUSIONS: Our data support a panel of four urinary metabolite biomarkers for diagnosing the consumption of ADB-BUTINACA.


Assuntos
Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Biomarcadores/metabolismo , Canabinoides/análise , Cromatografia Líquida/métodos , Humanos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Psicotrópicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA