RESUMO
OBJECTIVE: This study aimed to explore marker genes and their potential molecular mechanisms involved in US-guided MWA for glioma in mice. METHOD: The differentially expressed genes (DEGs1 and DEGs2) and lncRNAs (DELs1 and DELs2) were obtained between Non (glioma tissues without MWA) and T0 groups (0h after MWA), as well as between Non and T24 groups (24h after MWA). The down-regulation cluster genes (CONDOWNDEGs) and upregulation cluster genes (CONUPDEGs) were identified by time series analysis. Candidate genes were obtained by overlapping CONDOWNDEGs with downregulation DEGs (DOWNDEGs)1 and DOWNDEGs2, as well as CONUPDEGs with up-regulation DEGs (UPDEGs)1 and UPDEGs2. The expressions of immune checkpoints and inflammatory factors, gene set enrichment analysis (GSEA), and protein subcellular localization were performed. The eXpression2Kinases (X2K), GeneMANIA, transcription factor (TF), and competing endogenous (ce) RNA regulatory networks were conducted. The expression of marker genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Five marker genes (IL32, VCAM1, IL34, NFKB1 and CXCL13) were identified, which were connected with immune-related functions. Two immune checkpoints (CD96 and TIGIT) and six inflammatory factors played key roles in US-guided MWA for glioma. ceRNA regulatory networks revealed that miR-625-5p, miR-625-3p, miR-31-5p and miR-671-5p were associated with target genes. qRT-PCR indicated both IL32, VCAM1, and NFKB1 were potential markers under US-guided MWA-related time series analysis. CONCLUSION: The use of US-guided MWA might be a practical method for influencing the function of target genes, regulating time frames to decrease inflammation, and stimulating immune responses in glioma therapy.
Assuntos
Glioma , Glioma/genética , Glioma/cirurgia , Animais , Camundongos , Micro-Ondas/uso terapêutico , Transcriptoma , Masculino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgiaRESUMO
The metastasis of breast cancer is believed to have a negative effect on its prognosis. Benefiting from the remarkable deep-penetrating and noninvasive characteristics, sonodynamic therapy (SDT) demonstrates a whole series of potential leading to cancer treatment. To relieve the limitation of monotherapy, a multifunctional nanoplatform has been explored to realize the synergistic treatment efficiency. Herein, we establish a novel multifunctional nano-system which encapsulates chlorin e6 (Ce6, for SDT), perfluoropentane (PFP, for ultrasound imaging), and docetaxel (DTX, for chemotherapy) in a well-designed PLGA core-shell structure. The synergistic Ce6/PFP/DTX/PLGA nanoparticles (CPDP NPs) featured with excellent biocompatibility and stability primarily enable its further application. Upon low-intensity focused ultrasound (LIFU) irradiation, the enhanced ultrasound imaging could be revealed both in vitro and in vivo. More importantly, combined with LIFU, the nanoparticles exhibit intriguing antitumor capability through Ce6-induced cytotoxic reactive oxygen species as well as DTX releasing to generate a concerted therapeutic efficiency. Furthermore, this treating strategy actives a strong anti-metastasis capability by which lung metastatic nodules have been significantly reduced. The results indicate that the SDT-oriented nanoplatform combined with chemotherapy could be provided as a promising approach in elevating effective synergistic therapy and suppressing lung metastasis of breast cancer.
RESUMO
BACKGROUND: Efficient and targeted delivery of cytotoxic drugs is still a challenge in the fight against cancer. Ultrasound-targeted destruction of cytotoxic drug-loaded lipid microbubbles (LMs) might be a promising method. This study aimed to explore the antitumor effects of docetaxel-loaded LM (DLLM) combined with ultrasound-targeted microbubble destruction (UTMD) on liver cancer. MATERIALS AND METHODS: DLLMs were made by a mechanical vibration technique. The effects of docetaxel, DLLM alone, and DLLM + UTMD on cell viability and cell proliferation (Cell Counting Kit-8 assay) of MHCC-H cells and HepG2 cells were tested. The effects on cell cycle (flow cytometry) and apoptosis (flow cytometry and immunoblotting) of MHCC-H cells were tested. Solid fast-growing tumor mouse models were established and were randomized to blank LM + UTMD (controls) or DLLM + UTMD. Tumor volume was compared between the two groups. RESULTS: DLLMs had an 18%±7% drug-loading capacity, an 80%±3% encapsulation efficiency, and a mean particle size of 2,845 nm (75% range 1,527-5,534 nm). Compared to the other groups, DLLM + UTMD decreased the proliferation and increased the apoptosis of MHCC-H cells. DLLM + UTMD resulted in the inhibition of a higher proportion of cells in the G1 phase. Compared to the control group, the tumor volume in mice receiving DLLM + UTMD was smaller. CONCLUSION: DLLM + UTMD can increase the proportion of cells arrested in the G1 phase, decrease tumor cell proliferation, and induce MHCC-H cell apoptosis. The growth of solid tumors in mice was inhibited. These results could provide a novel targeted strategy against liver cancer.