Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(6): 277, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789671

RESUMO

Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 µm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.


Assuntos
Biomassa , Lacase , Lignina , Lignina/metabolismo , Lacase/metabolismo , Argélia , Celulase/metabolismo , Açúcares/metabolismo , Celulose/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/enzimologia , Bactérias/genética , Fermentação , Polissacarídeos/metabolismo , Bacillus/metabolismo , Bacillus/enzimologia
2.
J Biotechnol ; 361: 99-109, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36509383

RESUMO

Laccase production by fungal growth on agrifood waste is still poorly studied. Trametes versicolor K1 isolated from palm bark produced a yellow non glycosylated laccase from tomato waste based medium (TMT) and a blue glycosylated laccase on glucose medium (GLU). Lignocellulosic biomass, such as pinecones (PIN), palm leaves (PLM), olive pomace (OLV), and alfa stems (ALF) have also been used as growth medium for T. versicolor K1. In these conditions, very low or no laccase production was observed. When peptone was supplied in TMT medium, the laccase activity increased from 4170 U/L to 8618 U/L. By increasing the culture volume up to 1 L, laccase production on TMT was 9929 U/L. The yellow laccase (TmtLac) was purified from the supernatant TMT medium and has shown similar characteristics with the blue laccase (GluLac) purified from the GLU medium. Their apparent protein size was 63 kDa. Catalytic activities of the yellow form were not very different from those of the blue form, but specific activity of the purified yellow laccase produced on tomato waste was much higher. The Km and Vm values for four substrates, ABTS, DMP, guaiacol, and pyrogallol were almost similar for both isoenzymes. The optimum pH and temperature were respectively 4.0 and 50 °C. Although the level of glycosylation is clearly different, the thermostability of TmtLac and GluLac are quite similar. TmtLac is even slightly more tolerant at 60 °C for 24 h than GluLac. Moreover TmtLac showed greater stability at alkaline pH after 24 h compared to that of GluLac.We demonstrate that activity of the yellow TmtLac is not significantly affected compared to the blue laccase and that tomato waste is a simple and interesting lignocellulosic substrate to the laccase producer Trametes sp.


Assuntos
Solanum lycopersicum , Trametes , Lacase/metabolismo
3.
Mycologia ; 115(4): 437-455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37216583

RESUMO

Optimization of xylanase and cellulase production by a newly isolated Aspergillus fumigatus strain grown on Stipa tenacissima (alfa grass) biomass without pretreatment was carried out using a Box-Behnken design. First, the polysaccharides of dried and ground alfa grass were characterized using chemical methods (strong and diluted acid). The effect of substrate particle size on xylanase and carboxymethylcellulase (CMCase) production by the selected and identified strain was then investigated. Thereafter, experiments were statistically planned with a Box-Behnken design to optimize initial pH, cultivation temperature, moisture content, and incubation period using alfa as sole carbon source. The effect of these parameters on the two enzyme production was evaluated using the response surface method. Analysis of variance was also carried out, and production of the enzymes was expressed using a mathematical equation depending on the influencing factors. The effects of individual, interaction, and square terms on production of both enzymes were represented using the nonlinear regression equations with significant R2 and P-values. Xylanase and CMCase production levels were enhanced by 25% and 27%, respectively. Thus, this study demonstrated for the first time the potential of alfa as a raw material to produce enzymes without any pretreatment. A set of parameter combinations was found to be effective for the production of xylanase and CMCase by A. fumigatus in an alfa-based solid-state fermentation.


Assuntos
Aspergillus fumigatus , Poaceae , Biomassa , Fermentação , Temperatura , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA