Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(3): 632-643.e12, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607510

RESUMO

Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this "innate" piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity.


Assuntos
Gammaretrovirus/genética , Phascolarctidae/genética , RNA Interferente Pequeno/genética , Animais , Elementos de DNA Transponíveis , Gammaretrovirus/metabolismo , Gammaretrovirus/patogenicidade , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Produtos do Gene pol/genética , Produtos do Gene pol/metabolismo , Genoma , Células Germinativas/metabolismo , Células Germinativas/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Phascolarctidae/virologia , Splicing de RNA , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Interferente Pequeno/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943984

RESUMO

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Assuntos
Retrovirus Endógenos , Evolução Molecular , Gammaretrovirus , Phascolarctidae , Animais , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Variação Genética , New South Wales , Phascolarctidae/virologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Vitória
3.
Glycobiology ; 34(2)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38048640

RESUMO

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicosilação , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais
4.
PLoS Pathog ; 18(5): e1010513, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35588407

RESUMO

Koala Retrovirus (KoRV) has been associated with neoplasia in the vulnerable koala (Phascolarctos cinereus). However, there are conflicting findings regarding its association with secondary disease. We undertook a large-scale assessment of how the different KoRV subtypes and viral load are associated with Chlamydia pecorum infection and a range of disease pathologies in 151 wild koalas admitted for care to Currumbin Wildlife Hospital, Australia. Viral load (KoRV pol copies per ml of plasma) was the best predictor of more disease pathologies than any other KoRV variable. The predicted probability of a koala having disease symptoms increased from 25% to over 85% across the observed range of KoRV load, while the predicted probability of C. pecorum infection increased from 40% to over 80%. We found a negative correlation between the proportion of env deep sequencing reads that were endogenous KoRV-A and total KoRV load. This is consistent with suppression of endogenous KoRV-A, while the exogenous KoRV subtypes obtain high infection levels. Additionally, we reveal evidence that the exogenous subtypes are directly associated with secondary disease, with the proportion of reads that were the endogenous KoRV-A sequence a negative predictor of overall disease probability after the effect of KoRV load was accounted for. Further, koalas that were positive for KoRV-D or KoRV-D/F were more likely to have urogenital C. pecorum infection or low body condition score, respectively, irrespective of KoRV load. By contrast, our findings do not support previous findings that KoRV-B in particular is associated with Chlamydial disease. Based on these findings we suggest that koala research and conservation programs should target understanding what drives individual differences in KoRV load and limiting exogenous subtype diversity within populations, rather than seeking to eliminate any particular subtype.


Assuntos
Infecções por Chlamydia , Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Animais , Animais Selvagens , Infecções por Chlamydia/veterinária , Infecções por Retroviridae/veterinária
5.
Mol Psychiatry ; 28(7): 2878-2893, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36316366

RESUMO

Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice. Next, utilising a model of human monocyte-derived microglia, we identified that SARS-CoV-2 isolates can bind and enter human microglia in the absence of viral replication. This interaction of virus and microglia directly induced robust inflammasome activation, even in the absence of another priming signal. Mechanistically, we demonstrated that purified SARS-CoV-2 spike glycoprotein activated the NLRP3 inflammasome in LPS-primed microglia, in a ACE2-dependent manner. Spike protein also could prime the inflammasome in microglia through NF-κB signalling, allowing for activation through either ATP, nigericin or α-synuclein. Notably, SARS-CoV-2 and spike protein-mediated microglial inflammasome activation was significantly enhanced in the presence of α-synuclein fibrils and was entirely ablated by NLRP3-inhibition. Finally, we demonstrate SARS-CoV-2 infected hACE2 mice treated orally post-infection with the NLRP3 inhibitory drug MCC950, have significantly reduced microglial inflammasome activation, and increased survival in comparison with untreated SARS-CoV-2 infected mice. These results support a possible mechanism of microglial innate immune activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in COVID-19 infected individuals, and a potential therapeutic avenue for intervention.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , Camundongos Transgênicos
6.
Virol J ; 21(1): 14, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200531

RESUMO

The human T-lymphotropic virus type 1 (HTLV-1) infects millions of people globally and is endemic to various resource-limited regions. Infections persist for life and are associated with increased susceptibility to opportunistic infections and severe diseases including adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy-tropical spastic paraparesis. No HTLV-1-specific anti-retrovirals have been developed and it is unclear whether existing anti-retrovirals developed for treatment of human immunodeficiency virus (HIV) have efficacy against HTLV-1. To understand the structural basis for therapeutic binding, homology modelling and machine learning were used to develop a structural model of the HTLV-1 reverse transcriptase. With this, molecular docking experiments using a panel of FDA-approved inhibitors of viral reverse transcriptases to assess their capacity for binding, and in turn, inhibition. Importantly, nucleoside/nucleotide reverse transcriptase inhibitor but not non-nucleoside reverse transcriptase inhibitors were predicted to bind the HTLV-1 reverse transcriptase, with similar affinity to HIV-1 reverse transcriptase. By strengthening the rationale for clinical testing of therapies such as tenofovir alafenamide, zidovudine, lamivudine, and azvudine for treatment of HTLV-1, this study has demonstrated the power of in silico structural biology approaches in drug design and therapeutic testing.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Adulto , Humanos , Nucleotídeos , Inibidores da Transcriptase Reversa/farmacologia , Simulação de Acoplamento Molecular
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34493581

RESUMO

Koala populations are currently in rapid decline across Australia, with infectious diseases being a contributing cause. The koala retrovirus (KoRV) is a gammaretrovirus present in both captive and wild koala colonies that presents an additional challenge for koala conservation in addition to habitat loss, climate change, and other factors. Currently, nine different subtypes (A to I) have been identified; however, KoRV genetic diversity analyses have been limited. KoRV is thought to be exogenously transmitted between individuals, with KoRV-A also being endogenous and transmitted through the germline. The mechanisms of exogenous KoRV transmission are yet to be extensively investigated. Here, deep sequencing was employed on 109 captive koalas of known pedigree, housed in two institutions from Southeast Queensland, to provide a detailed analysis of KoRV transmission dynamics and genetic diversity. The final dataset included 421 unique KoRV sequences, along with the finding of an additional subtype (KoRV-K). Our analysis suggests that exogenous transmission of KoRV occurs primarily between dam and joey, with evidence provided for multiple subtypes, including nonendogenized KoRV-A. No evidence of sexual transmission was observed, with mating partners found to share a similar number of sequences as unrelated koala pairs. Importantly, both distinct captive colonies showed similar trends. These findings indicate that breeding strategies or antiretroviral treatment of females could be employed as effective management approaches in combating KoRV transmission.


Assuntos
Variação Genética/genética , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/virologia , Retroviridae/genética , Animais , Evolução Molecular , Feminino , Masculino , Phascolarctidae , Queensland
8.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054904

RESUMO

Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Assuntos
Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , COVID-19/diagnóstico , Infecções por Henipavirus/diagnóstico , Ensaios de Triagem em Larga Escala , Infecções por Vírus Respiratório Sincicial/diagnóstico , Proteínas Virais de Fusão/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/metabolismo , COVID-19/imunologia , COVID-19/virologia , Fusão Celular , Convalescença , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos , Soros Imunes/química , Luciferases/genética , Luciferases/metabolismo , Modelos Moleculares , Vírus Nipah/imunologia , Vírus Nipah/patogenicidade , Conformação Proteica , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/patogenicidade , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Suínos , Inibidores de Proteínas Virais de Fusão/química , Inibidores de Proteínas Virais de Fusão/metabolismo , Inibidores de Proteínas Virais de Fusão/farmacologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
9.
Eur J Pediatr ; 180(7): 2125-2135, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33634335

RESUMO

Respiratory syncytial virus (RSV) is the most common virus identified in children hospitalised with acute respiratory infections. However, less is known about RSV in community settings. This report describes RSV epidemiology in the community, including acute illness episodes, healthcare burden, and risk factors in Australian children during the first 2-years of life. A community-based, birth cohort from Brisbane, Australia, followed children until their second birthday. Parents completed daily respiratory symptom and illness-burden diaries. Weekly parent-collected nasal swabs were analysed for RSV by real-time polymerase chain reaction assays. Serum RSV-neutralising antibodies were assayed at age 3 years. Overall, 158 children provided 11,216 swabs, of which 104 were RSV-positive (85 incident episodes). RSV incidence in the first 2 years of life was 0.46 (95% CI = 0.37-0.58) episodes per child-year. Incidence increased with age and formal childcare attendance and was highest in autumn. Of 82 episodes linked with symptom data, 60 (73.2%) were symptomatic, 28 (34.1%) received community-based medical care, and 2 (2.4%) led to hospitalisation. Viral load was higher in symptomatic than asymptomatic infections. In 72 children, RSV-specific antibody seroprevalence was 94.4% at age 3 years.Conclusion: RSV incidence increased after age 6-months with approximately three-quarters of infections symptomatic and most infections treated in the community. What is known •RSV is a major cause of hospitalisation for acute lower respiratory infections in infants and young children, especially in the first 6 months of life. •However, limited data exist on the overall burden in young children at the community level. What is new •RSV incidence in the community increases after age 6 months, and by 3 years, most children have been infected. •About one-quarter of RSV infections were asymptomatic in children aged < 2 years, and approximately 60% of children with RSV-related symptoms had a healthcare contact of any kind with most managed within the community.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Austrália/epidemiologia , Criança , Pré-Escolar , Hospitalização , Humanos , Incidência , Lactente , Infecções por Vírus Respiratório Sincicial/epidemiologia , Fatores de Risco , Estudos Soroepidemiológicos
10.
Microbiology (Reading) ; 166(1): 63-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714201

RESUMO

Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are frequently co-associated during acute respiratory infections, particularly amongst infants and young children. In this study, we aimed to identify strains of RSV and serotypes/sequence types of S. pneumoniae associated with co-infections within a cohort of paediatric patients, and to assess RSV-mediated adhesion of pneumococcal isolates. The RSV glycoprotein sequence was determined for 58 RSV-positive samples and molecular serotyping and MLST was used to analyse 26 pneumococcal isolates. We also compared 23 pneumococcal isolates for their adherence to RSV-infected or mock-infected airway epithelia cells using immunofluorescence microscopy and automated particle counting. The tight association between RSV and S. pneumoniae was also visualized using scanning electron microscopy. This study did not identify any statistically significant trend in the strains of RSV and S. pneumoniae associated with co-infections. Furthermore, almost all isolates (22 of 23) showed significantly increased adherence to RSV-infected cells. The level of adherence did not appear to correlate with pneumococcal strain or sequence type, and isolates obtained from RSV-infected patients displayed a similar level of adherence as those from RSV-negative patients. The absence of particular S. pneumoniae or RSV strains associated with co-infection, together with the near ubiquitous presence of RSV-mediated adhesion throughout the pneumococcal clinical isolates, may indicate that the mechanisms governing the association with RSV are of sufficient importance to be maintained across much of the species.


Assuntos
Aderência Bacteriana/fisiologia , Coinfecção/microbiologia , Filogenia , Vírus Sinciciais Respiratórios/isolamento & purificação , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/isolamento & purificação , Células A549 , Proteínas de Bactérias/genética , Pré-Escolar , Coinfecção/virologia , Células Epiteliais , Variação Genética , Humanos , Lactente , Recém-Nascido , Vírus Sinciciais Respiratórios/classificação , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/fisiologia , Infecções Respiratórias/virologia , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia , Proteínas Virais de Fusão/genética
11.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212939

RESUMO

Respiratory syncytial virus (RSV) mediates host cell entry through the fusion (F) protein, which undergoes a conformational change to facilitate the merger of viral and host lipid membrane envelopes. The RSV F protein comprises a trimer of disulfide-bonded F1 and F2 subunits that is present on the virion surface in a metastable prefusion state. This prefusion form is readily triggered to undergo refolding to bring two heptad repeats (heptad repeat A [HRA] and HRB) into close proximity to form a six-helix bundle that stabilizes the postfusion form and provides the free energy required for membrane fusion. This process can be triggered independently of other proteins. Here, we have performed a comprehensive analysis of a third heptad repeat region, HRC (amino acids 75 to 97), an amphipathic α-helix that lies at the interface of the prefusion F trimer and is a major structural feature of the F2 subunit. We performed alanine scanning mutagenesis from Lys-75 to Met-97 and assessed all mutations in transient cell culture for expression, proteolytic processing, cell surface localization, protein conformation, and membrane fusion. Functional characterization revealed a striking distribution of activity in which fusion-increasing mutations localized to one side of the helical face, while fusion-decreasing mutations clustered on the opposing face. Here, we propose a model in which HRC plays a stabilizing role within the globular head for the prefusion F trimer and is potentially involved in the early events of triggering, prompting fusion peptide release and transition into the postfusion state.IMPORTANCE RSV is recognized as the most important viral pathogen among pediatric populations worldwide, yet no vaccine or widely available therapeutic treatment is available. The F protein is critical for the viral replication process and is the major target for neutralizing antibodies. Recent years have seen the development of prefusion stabilized F protein-based approaches to vaccine design. A detailed understanding of the specific domains and residues that contribute to protein stability and fusion function is fundamental to such efforts. Here, we present a comprehensive mutagenesis-based study of a region of the RSV F2 subunit (amino acids 75 to 97), referred to as HRC, and propose a role for this helical region in maintaining the delicate stability of the prefusion form.


Assuntos
Vírus Sinciciais Respiratórios/química , Proteínas Virais de Fusão/química , Animais , Anticorpos Monoclonais Humanizados/imunologia , Células COS , Chlorocebus aethiops , Cricetulus , Humanos , Conformação Proteica , Estabilidade Proteica
12.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187546

RESUMO

Small-animal models have been used to obtain many insights regarding the pathogenesis and immune responses induced following infection with human respiratory syncytial virus (hRSV). Among those described to date, infections in cotton rats, mice, guinea pigs, chinchillas, and Syrian hamsters with hRSV strains Long and/or A2 have been well characterized, although clinical isolates have also been examined. Ferrets are also susceptible to hRSV infection, but the pathogenesis and immune responses elicited following infection have not been well characterized. Here, we describe the infection of adult ferrets with hRSV Long or A2 via the intranasal route and characterized virus replication, as well as cytokine induction, in the upper and lower airways. Virus replication and cytokine induction during the acute phase of infection (days 0 to 15 postinfection) were similar between the two strains, and both elicited high levels of F glycoprotein-specific binding and neutralizing antibodies following virus clearance (days 16 to 22 postinfection). Importantly, we demonstrate transmission from experimentally infected donor ferrets to cohoused naive recipients and have characterized virus replication and cytokine induction in the upper airways of infected contact animals. Together, these studies provide a direct comparison of the pathogenesis of hRSV Long and A2 in ferrets and highlight the potential of this animal model to study serological responses and examine interventions that limit transmission of hRSV.IMPORTANCE Ferrets have been widely used to study pathogenesis, immunity, and transmission following human influenza virus infections; however, far less is known regarding the utility of the ferret model to study hRSV infections. Following intranasal infection of adult ferrets with the well-characterized Long or A2 strain of hRSV, we report virus replication and cytokine induction in the upper and lower airways, as well as the development of virus-specific humoral responses. Importantly, we demonstrate transmission of hRSV from experimentally infected donor ferrets to cohoused naive recipients. Together, these findings significantly enhance our understanding of the utility of the ferret as a small-animal model to investigate aspects of hRSV pathogenesis and immunity.


Assuntos
Modelos Animais de Doenças , Imunidade Humoral/imunologia , Infecções por Vírus Respiratório Sincicial/transmissão , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Infecções Respiratórias/virologia , Animais , Furões , Células HeLa , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/imunologia , Carga Viral , Replicação Viral
13.
Respirology ; 23(2): 220-227, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28913912

RESUMO

BACKGROUND AND OBJECTIVE: Respiratory syncytial virus (RSV) is the most significant cause of acute respiratory infection (ARI) in early life. RSV and other respiratory viruses are known to stimulate substantial outgrowth of potentially pathogenic bacteria in the upper airways of young children. However, the clinical significance of interactions between viruses and bacteria is currently unclear. The present study aimed to clarify the effect of viral and bacterial co-detections on disease severity during paediatric ARI. METHODS: Nasopharyngeal aspirates from children under 2 years of age presenting with ARI to the emergency department were screened by quantitative PCR for 17 respiratory viruses and the bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Associations between pathogen detection and clinical measures of disease severity were investigated. RESULTS: RSV was the most common virus detected, present in 29 of 58 samples from children with ARI (50%). Detection of S. pneumoniae was significantly more frequent during RSV infections compared to other respiratory viruses (adjusted effect size: 1.8, P: 0.03), and co-detection of both pathogens was associated with higher clinical disease severity scores (adjusted effect size: 1.2, P: 0.03). CONCLUSION: Co-detection of RSV and S. pneumoniae in the nasopharynx was associated with more severe ARI, suggesting that S. pneumoniae colonization plays a pathogenic role in young children.


Assuntos
Coinfecção/diagnóstico , Coinfecção/microbiologia , Nasofaringe/microbiologia , Infecções por Vírus Respiratório Sincicial/microbiologia , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/isolamento & purificação , Feminino , Haemophilus influenzae/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Masculino , Moraxella catarrhalis/isolamento & purificação , Vírus Sinciciais Respiratórios/isolamento & purificação
14.
Mol Cell Proteomics ; 15(10): 3297-3320, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451424

RESUMO

Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.


Assuntos
Células A549/virologia , Proteoma/metabolismo , Proteômica/métodos , Vírus Sincicial Respiratório Humano/fisiologia , Células A549/metabolismo , Cromatografia Líquida/métodos , Regulação da Expressão Gênica , Humanos , Fosforilação , Proteólise , Espectrometria de Massas em Tandem/métodos
15.
Proc Natl Acad Sci U S A ; 109(8): 3089-94, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22323598

RESUMO

Human respiratory syncytial virus (hRSV) is the most important viral agent of pediatric respiratory infections worldwide. The only specific treatment available today is a humanized monoclonal antibody (Palivizumab) directed against the F glycoprotein, administered prophylactically to children at very high risk of severe hRSV infections. Palivizumab, as most anti-F antibodies so far described, recognizes an epitope that is shared by the two conformations in which hRSV_F can fold, the metastable prefusion form and the highly stable postfusion conformation. We now describe a unique class of antibodies specific for the prefusion form of this protein that account for most of the neutralizing activity of either a rabbit serum raised against a vaccinia virus recombinant expressing hRSV_F or a human Ig preparation (Respigam), which was used for prophylaxis before Palivizumab. These antibodies therefore offer unique possibilities for immune intervention against hRSV, and their production should be assessed in trials of hRSV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/terapia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Animais , Humanos , Imunização , Dados de Sequência Molecular , Estabilidade Proteica , Coelhos , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vaccinia virus/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura
17.
Lancet Microbe ; 5(4): e400-e408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246188

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus associated with substantial risk of secondary (often life-threatening) disease for the estimated 10 million to 20 million people infected globally. Despite a clear need, no HTLV-1-specific vaccine or antiretroviral therapy has been developed to date. Instead, existing public and primary health-care interventions inadequately focus on infection prevention and management of secondary diseases. In this Personal View, we discuss the evidence that exists to support the sensitivity of HTLV-1 to antiretroviral therapies approved by the US Food and Drug Administration for the treatment of HIV-1, how this sensitivity is affected by clinically relevant virological and immunological features, and additional practical considerations for the use of antiretroviral therapies in the context of HTLV-1.


Assuntos
Infecções por HIV , HIV-1 , Vírus Linfotrópico T Tipo 1 Humano , Estados Unidos/epidemiologia , Humanos , Profilaxia Pós-Exposição , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle
18.
Lancet Haematol ; 10(7): e539-e548, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407143

RESUMO

The human T-lymphotropic virus type 1 (HTLV-1) retrovirus infects 10-20 million people globally, with endemic regions in southwestern Japan, the Caribbean basin, Africa, and central Australia. HTLV-1 is associated with lifelong infection and immune suppression, resulting in a range of serious sequalae, including adult T-cell leukaemia or lymphoma (ATLL) in 5% of cases. To date, there are no preventive or curative treatments for HTLV-1 and treatment outcomes for ATLL remain generally poor. Depending on the disease subtype, overall survival is 8-55 months. Recent advancements in the past decade have identified genetic, molecular, and immunological events occurring throughout the lives of individuals infected with HTLV-1 and of those who progress to ATLL. In addition, updated guidelines for clinical management have been published. With the aim of focusing research efforts on the development of treatments for both HTLV-1 infections and ATLL, we have conceptualised a four-step disease model for HTLV-1-associated ATLL: (1) viral exposure, (2) establishment of chronic infection, (3) cellular transformation and evolution, and (4) disease presentation and management. For each stage we describe the clinical features, molecular and immunological factors involved, potential biomarkers of disease progression, and the therapeutic applicability of individual targets. We also discuss emerging concepts and novel treatment approaches. Our hope is that this model will promote research interest and guide the testing of new treatments for this neglected virus and its associated rare cancer.


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfoma , Adulto , Humanos , Infecções por HTLV-I/complicações , Progressão da Doença , Linfoma/complicações
19.
Nat Commun ; 14(1): 3577, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328468

RESUMO

In August 2022, a novel henipavirus (HNV) named Langya virus (LayV) was isolated from patients with severe pneumonic disease in China. This virus is closely related to Mòjiang virus (MojV), and both are divergent from the bat-borne HNV members, Nipah (NiV) and Hendra (HeV) viruses. The spillover of LayV is the first instance of a HNV zoonosis to humans outside of NiV and HeV, highlighting the continuing threat this genus poses to human health. In this work, we determine the prefusion structures of MojV and LayV F proteins via cryogenic electron microscopy to 2.66 and 3.37 Å, respectively. We show that despite sequence divergence from NiV, the F proteins adopt an overall similar structure but are antigenically distinct as they do not react to known antibodies or sera. Glycoproteomic analysis revealed that while LayV F is less glycosylated than NiV F, it contains a glycan that shields a site of vulnerability previously identified for NiV. These findings explain the distinct antigenic profile of LayV and MojV F, despite the extent to which they are otherwise structurally similar to NiV. Our results carry implications for broad-spectrum HNV vaccines and therapeutics, and indicate an antigenic, yet not structural, divergence from prototypical HNVs.


Assuntos
Infecções por Henipavirus , Henipavirus , Vírus Nipah , Humanos , Glicoproteínas/metabolismo , Proteínas Virais/metabolismo , Vírus Nipah/metabolismo
20.
EBioMedicine ; 97: 104842, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37865043

RESUMO

BACKGROUND: We previously demonstrated the safety and immunogenicity of an MF59-adjuvanted COVID-19 vaccine based on the SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a molecular clamp using HIV-1 glycoprotein 41 sequences. Here, we describe 12-month results in adults aged 18-55 years and ≥56 years. METHODS: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020-December 2021; ClinicalTrials.govNCT04495933; active, not recruiting). Healthy adults (Part 1: 18-55 years; Part 2: ≥56 years) received two doses of placebo, 5 µg, 15 µg, or 45 µg vaccine, or one 45 µg dose of vaccine followed by placebo (Part 1 only), 28 days apart (n = 216; 24 per group). Safety, humoral immunogenicity (including against virus variants), and cellular immunogenicity were assessed to day 394 (12 months after second dose). Effects of subsequent COVID-19 vaccination on humoral responses were examined. FINDINGS: All two-dose vaccine regimens were well tolerated and elicited strong antigen-specific and neutralising humoral responses, and CD4+ T-cell responses, by day 43 in younger and older adults, although cellular responses were lower in older adults. Humoral responses waned by day 209 but were boosted in those receiving authorised vaccines. Neutralising activity against Delta and Omicron variants was present but lower than against the Wuhan strain. Cross-reactivity in HIV diagnostic tests declined over time but remained detectable in most participants. INTERPRETATION: The SARS-CoV-2 molecular clamp vaccine is well tolerated and evokes robust immune responses in adults of all ages. Although the HIV glycoprotein 41-based molecular clamp is not being progressed, the clamp concept represents a viable platform for vaccine development. FUNDING: This study was funded by the Coalition for Epidemic Preparedness Innovations, the National Health and Medical Research Council of Australia, and the Queensland Government.


Assuntos
COVID-19 , Infecções por HIV , Vacinas , Humanos , Idoso , SARS-CoV-2 , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Infecções por HIV/prevenção & controle , Glicoproteínas , Método Duplo-Cego , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA