Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phys Chem Chem Phys ; 24(12): 7505-7511, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35288726

RESUMO

Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Qx 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores.

2.
Chemistry ; 27(38): 9934-9947, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876842

RESUMO

Heavy-atom-free sensitizers forming long-living triplet excited states via the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process have recently attracted attention due to their potential to replace costly transition metal complexes in photonic applications. The efficiency of SOCT-ISC in BODIPY donor-acceptor dyads, so far the most thoroughly investigated class of such sensitizers, can be finely tuned by structural modification. However, predicting the triplet state yields and reactive oxygen species (ROS) generation quantum yields for such compounds in a particular solvent is still very challenging due to a lack of established quantitative structure-property relationship (QSPR) models. In this work, the available data on singlet oxygen generation quantum yields (ΦΔ ) for a dataset containing >70 heavy-atom-free BODIPY in three different solvents (toluene, acetonitrile, and tetrahydrofuran) were analyzed. In order to build reliable QSPR model, a series of new BODIPYs were synthesized that bear different electron donating aryl groups in the meso position, their optical and structural properties were studied along with the solvent dependence of singlet oxygen generation, which confirmed the formation of triplet states via the SOCT-ISC mechanism. For the combined dataset of BODIPY structures, a total of more than 5000 quantum-chemical descriptors was calculated including quantum-chemical descriptors using density functional theory (DFT), namely M06-2X functional. QSPR models predicting ΦΔ values were developed using multiple linear regression (MLR), which perform significantly better than other machine learning methods and show sufficient statistical parameters (R=0.88-0.91 and q2 =0.62-0.69) for all three solvents. A small root mean squared error of 8.2 % was obtained for ΦΔ values predicted using MLR model in toluene. As a result, we proved that QSPR and machine learning techniques can be useful for predicting ΦΔ values in different media and virtual screening of new heavy-atom-free BODIPYs with improved photosensitizing ability.

3.
Phys Chem Chem Phys ; 20(37): 24477-24489, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30222172

RESUMO

Herein, the synthesis of three covalently linked donor-acceptor zinc porphyrin-fullerene (ZnP-C60) dyads (C60trZnPCOOH, C60trZnPtrCOOH and C60ZnPCOOH) is described, and their application as sensitizers in NiO-based dye-sensitized solar cells (DSCs) is discussed. To the best of our knowledge, this is the first example where covalently linked ZnP-C60 dyads have been used as chromophores in NiO-based DSCs. In an effort to examine whether the distance of the chromophore from the electron acceptor entity and/or the NiO surface affects the performance of the cells, a triazole ring was introduced as a spacer between ZnP and the two peripheral units C60 and -COOH. The triazole ring was inserted between ZnP and C60 in dyad C60trZnPCOOH, whereas both the anchoring group and C60 were connected to ZnP through triazole spacers in C60trZnPtrCOOH, and dyad C60ZnPCOOH did not contain any triazole linker. Photophysical investigation performed by ultrafast transient absorption spectroscopy in solution and on the NiO surface demonstrated that all the porphyrin-fullerene dyads exhibited long-lived charge-separated states due to electron shifts from the reduced porphyrin core to C60. The transient experiments performed in solution showed that the presence of triazole ring influenced the photophysical properties of the dyads C60trZnPCOOH and C60trZnPtrCOOH and in particular, increased the lifetime of the charge-separated states compared to that of the C60ZnPCOOH dyad. On the other hand, the corresponding studies on the NiO surface proved that the triazole spacer has a rather moderate impact on the charge separation (NiO-ZnP˙+-C60˙-) and charge recombination (NiO-3*ZnP-C60) rate constants. All three dyads exhibited enhanced performance in terms of photovoltaic measurements with more than threefold increase compared to the reference compound PhtrZnPCOOH in which the C60 acceptor is absent. Two different electrolytes were examined (I3-/I- and CoIII/II) and in most cases, the presence of the triazole ring enhanced their photovoltaic performance. The best performing dyad in I3-/I- was C60trZnPCOOH (PCE = 0.076%); in CoIII/II, the best performing dyad was C60trZnPtrCOOH (PCE = 0.074%).

4.
Phys Chem Chem Phys ; 20(33): 21269-21279, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30039139

RESUMO

We report on the synthesis, characterization and photophysical properties of a donor-bridge-acceptor supramolecular hybrid system, consisting of a tetrapyridyl fullerene derivative (C60-tpyr) as electron acceptor, with the four pyridyl groups as part of oligophenyleneethynylene/phenylenevinylene bridges, and zinc porphyrin dimers (ZnP)2 as electron donor species. Based on the metal-to-ligand coordination between the zinc metal centers of (ZnP)2 and the four pyridyl entities of C60-tpyr, a strong binding constant (5 × 105 M-1) for the formation of C60-tpyr·[(ZnP)2]2 was evidenced. Insights into the electronic interactions between the photoactive (ZnP)2 units and C60-tpyr emanated from complementary physicochemical assays, which were further supported by theoretical calculations. Notably, the absorption and emission titration assays revealed strong interactions between the electron donor and acceptor species within C60-tpyr·[(ZnP)2]2, both in the ground and excited state. Moreover, femtosecond and nanosecond laser photolysis transient absorption measurements were performed and provided solid evidence for intramolecular electron transfer processes derived from the singlet excited state of (ZnP)2 to C60-tpyr. Comparison with systems in which either four monomeric zinc porphyrins (ZnP) were complexed with C60-tpyr or a (ZnP)2 was coordinated with a dipyridylfullerene revealed the beneficial role of C60-tpyr in increasing the lifetime of charge-separation.

5.
Inorg Chem ; 56(17): 10268-10280, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28829583

RESUMO

Sequential photoinduced energy transfer followed by electron transfer leading to the formation of charge separated states in a newly assembled series of supramolecular triads comprised of boron dipyrromethenes (BODIPY or BDP), aluminum porphyrin (AlTPP) and C60 is demonstrated. In the present strategy, the energy donor (BDP) and electron acceptor (C60) were axially positioned to the plane of AlTPP via the central metal. The structural integrity of the newly synthesized compounds and self-assembled systems were fully established using spectral, electrochemical and computational methods. Thermodynamic feasibility of energy transfer from 1BDP* to AlTPP and subsequent electron transfer from 1AlTPP* to generate BDP-AlTPP•+-C60•- charge separated states was derived from free-energy calculations. Occurrence of ultrafast energy transfer from 1BDP* to AlTPP was established from studies involving steady-state and time-resolved emission, as well as femtosecond transient spectroscopic techniques. The BDP-AlTPP•+-C60•- charge separated states persisted for several nanoseconds prior returning to the ground state.

6.
Chem Commun (Camb) ; 60(73): 9934-9937, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39072688

RESUMO

A CuII complex (1) of a bis-pyridine-dioxime ligand and its one-electron oxidized analog (1-ox) were thoroughly characterized by various spectroscopic techniques, including X-ray absorption spectroscopy. 1-ox was found to be a CuII complex of a ligand iminoxyl radical and represents the first example of such a type. Reorganization energy (λ) of 2.12 eV was determined for the 1-ox/1 couple, which is considerably higher than the type 1 protein and synthetic CuIII/II(OH) complexes.

7.
Nanoscale ; 14(26): 9304-9312, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35758634

RESUMO

The investigation of molecular model systems is fundamental towards a deeper understanding of key photochemical steps in natural photosynthesis. Herein, we report an entirely non-covalent triad consisting of boron dipyrromethene (BDP), porphyrin (ZnP), and fullerene (C60). Non-covalent binding motifs such as an amidinium-carboxylate salt bridge as well as axial pyridyl-metal coordination offer substantial electronic coupling and establish efficient pathways for photoactivated energy and electron transfer processes along a well-tuned gradient. Experimental findings from steady-state and time-resolved spectroscopic assays, as well as (spectro-)electrochemical measurements corroborate the formation of BDP|ZnP|C60 in solution, on one hand, and significant communication in the excited states, on the other hand. BDP acts as an energy harvesting antenna towards ZnP, which eventually undergoes charge separation with C60 by electron transfer from ZnP to C60. Notably, full spectral deconvolution of the transient species was achieved, supporting the successful self-assembly as well as giving a clear view onto the occurring photophysical processes and their spectral footprints upon photoexcitation.

8.
ACS Omega ; 7(2): 1803-1818, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071874

RESUMO

The need to detect and monitor biomolecules, especially within cells, has led to the emerging growth of fluorescent probes. One of the most commonly used labeling techniques for this purpose is reversible metallochelate coupling via a nitrilotriacetic acid (NTA) moiety. In this study, we focus on the synthesis and characterization of three new porphyrin-NTA dyads, TPP-Lys-NTA, TPP-CC-Lys-NTA, and Py 3 P-Lys-NTA composed of a porphyrin derivative covalently connected with a modified nitrilotriacetic acid chelate ligand (NTA), for possible metallochelate coupling with Ni2+ ions and histidine sequences. Emission spectroscopy studies revealed that all of the probes are able to coordinate with Ni2+ ions and consequently can be applied as fluorophores in protein/peptide labeling applications. Using two different histidine-containing peptides as His6-tag mimic, we demonstrated that the porphyrin-NTA hybrids are able to coordinate efficiently with the peptides through the metallochelate coupling process. Moving one step forward, we examined the ability of these porphyrin-peptide complexes to penetrate and accumulate in cancer cells, exploring the potential utilization of our system as anticancer agents.

9.
Nanoscale ; 11(8): 3557-3566, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30543233

RESUMO

In this work a peptide nucleic acid (PNA) was covalently connected with two different chromophores, namely porphyrin and boron-dipyrromethene. To the best of our knowledge, this is the first example in the literature where a PNA unit is covalently linked to such chromophores. The self-assembly properties of the hybrids were examined through electron microscopy experiments by adopting the "good-bad" solvent self-assembly protocol. For both hybrids (PNA-TPP and PNA-BDP) we were able to observe distinctive supramolecular architectures. During these studies we investigated the influence of the solvent system, the concentration and the deposition method on the morphology of the formed nanostructures. In the case of PNA-TPP under all examined conditions well-formed nanospheres were obtained. Interestingly, in the PNA-BDP hybrid by simply altering the solvent mixture, self-assemblies of two different morphologies were formed (spherical and flake shaped). Absorption and emission studies suggested the formation of J-aggregates in all the obtained nanostructures. The nano-architectures assembled by PNA conjugates are capable of light-harvesting and producing hydrogen using Pt nanoparticles as a photocatalyst.


Assuntos
Compostos de Boro/química , Ácidos Nucleicos Peptídicos/química , Porfirinas/química , Solventes/química , Catálise , Teoria da Densidade Funcional , Luz , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Platina/química , Espectrofotometria
10.
Chempluschem ; 83(4): 254-265, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957285

RESUMO

This study reports the synthesis of two novel zinc porphyrin families bearing four or eight alkoxy chains at their peripheral phenyl rings, with the length of the alkoxy chains ranging from 2, to 6, and to 12 carbon atoms. All zinc porphyrin derivatives were fully characterized with respect to their photophysical and electrochemical features. The zinc porphyrins could be processed into thin films which, depending on the length of the alkoxy chains on the aryl substituents, were found to be either of an ordered or a disordered nature, as it is revealed by spectroscopic and microscopic techniques. The films containing ordered self-assemblies displayed significantly enhanced electrical conductivity compared to the disordered films. This led to remarkable differences regarding their electroluminescence response that occurs at lower bias. Furthermore, their luminous efficiency was of almost one order of magnitude higher than that of disordered films.

11.
Nanoscale ; 10(4): 1735-1741, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29308481

RESUMO

Herein, we present the synthesis of a series of boron-dipyrromethane (BDP) derivatives bearing diphenylalanine (FF) at their meso position via amide bond coupling. The BDP-FF bioconjugates are able to form self-assembled materials with different morphologies. By altering various parameters such as the protecting group of the FF peptide or the solvent system of the self-assembly process, we were able to obtain either fibrillar or spherical nanostructures. Furthermore, we confirmed that both the formation as well as the dissociation of the self-assemblies is a reversible procedure that can be achieved by simply altering the solvent mixture. Electronic circular dichroism (ECD) studies demonstrated a characteristic mirror image relationship regarding the FLFL and FDFD enantiomers, revealing the chiral nature of the obtained materials. Interestingly, an intense excitonic bisignate signal was observed in the ECD spectrum of the fibrillar structures, whereas the spherical assemblies remained ECD silent. What is more, the electronic circular dichroism studies were supported by quantum chemical calculations.

12.
Dalton Trans ; 47(18): 6304-6313, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29658016

RESUMO

Herein, we report on the study of supramolecular assemblies based on polyoxometalates (POMs) upon their modification with amino acids. Two POM-amino acid hybrids were synthesized by coupling a functionalized Keggin type polyoxoanion [PW11O39{Sn(C6H4)C[triple bond, length as m-dash]C(C6H4)COOH}]4- with carboxyl-protected (methyl-ester) phenylalanine or diphenylalanine peptides. Surprisingly, all compounds, including the initial POM, formed supramolecular nanospheres in different solvent mixtures, which were examined by scanning electron microscopy (SEM). Molecular dynamics (MD) simulations for the POM-amino acid species revealed that the hydrophobic forces are mainly responsible for the initial aggregation into incipient micelle type structures, in which the organic arms are buried inside the aggregate while POM polar heads are more exposed to the solvent with tetrabutyl-ammonium counter cations acting as linkers.


Assuntos
Compostos Organometálicos/síntese química , Fenilalanina/química , Teoria Quântica , Compostos de Tungstênio/química , Microscopia Eletrônica de Varredura , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos Organometálicos/química , Tamanho da Partícula , Propriedades de Superfície
13.
Dalton Trans ; 45(34): 13284-8, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27363542

RESUMO

The syntheses, photophysical/electrochemical characterizations of different metallated porphyrins -i.e., Zn(2+), Pt(2+), Pd(2+), and Sn(4+) porphyrins - as well as their first application in light-emitting electrochemical cells are provided. A direct comparison demonstrates that depending on the metallation either efficient (Pt-por) or stable (Zn-por) devices are achieved, demonstrating that the choice of the metal core is a key aspect for future developments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA