Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genetics ; 175(1): 93-105, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17057248

RESUMO

Transient receptor potential (TRP) channel subunits form homotetramers that function in sensory transduction. Heteromeric channels also form, but their physiological subunit compositions and functions are largely unknown. We found a dominant-negative mutant of the C. elegans TRPV (vanilloid-type) subunit OCR-2 that apparently incorporates into and inactivates OCR-2 homomers as well as heteromers with the TRPV subunits OCR-1 and -4, resulting in a premature egg-laying defect. This defect is reproduced by knocking out all three OCR genes, but not by any single knockout. Thus a mixture of redundant heteromeric channels prevents premature egg laying. These channels, as well as the G-protein G alpha(o), function in neuroendocrine cells to promote release of neurotransmitters that block egg laying until eggs filling the uterus deform the neuroendocrine cells. The TRPV channel OSM-9, previously suggested to be an obligate heteromeric partner of OCR-2 in sensory neurons, is expressed in the neuroendocrine cells but has no detectable role in egg laying. Our results identify a specific set of heteromeric TRPV channels that redundantly regulate neuroendocrine function and show that a subunit combination that functions in sensory neurons is also present in neuroendocrine cells but has no detectable function in these cells.


Assuntos
Caenorhabditis elegans/metabolismo , Glândulas Endócrinas/metabolismo , Sistemas Neurossecretores/metabolismo , Oviposição/fisiologia , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glândulas Endócrinas/citologia , Feminino , Canais Iônicos/genética , Canais Iônicos/metabolismo , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistemas Neurossecretores/citologia , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPV/genética
2.
Nat Neurosci ; 7(10): 1096-103, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15378064

RESUMO

D1-like and D2-like dopamine receptors have synergistic and antagonistic effects on behavior. To understand the mechanisms underlying these effects, we studied dopamine signaling genetically in Caenorhabditis elegans. Knocking out a D2-like receptor, DOP-3, caused locomotion defects similar to those observed in animals lacking dopamine. Knocking out a D1-like receptor, DOP-1, reversed the defects of the DOP-3 knockout. DOP-3 and DOP-1 have their antagonistic effects on locomotion by acting in the same motor neurons, which coexpress the receptors and which are not postsynaptic to dopaminergic neurons. In a screen for mutants unable to respond to dopamine, we identified four genes that encode components of the antagonistic Galpha(o) and Galpha(q) signaling pathways, including Galpha(o) itself and two subunits of the regulator of G protein signaling (RGS) complex that inhibits Galpha(q). Our results indicate that extrasynaptic dopamine regulates C. elegans locomotion through D1- and D2-like receptors that activate the antagonistic Galpha(q) and Galpha(o) signaling pathways, respectively.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Sistema Nervoso/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Dopaminérgicos/metabolismo , Transdução de Sinais/fisiologia , Acetilcolina/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , DNA Complementar/análise , DNA Complementar/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/isolamento & purificação , Proteínas de Ligação ao GTP/metabolismo , Marcação de Genes , Dados de Sequência Molecular , Atividade Motora/genética , Neurônios Motores/metabolismo , Mutação/genética , Filogenia , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/isolamento & purificação , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/isolamento & purificação , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética
3.
Neuron ; 92(5): 1049-1062, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27866800

RESUMO

Little is known about how animals integrate multiple sensory inputs in natural environments to balance avoidance of danger with approach to things of value. Furthermore, the mechanistic link between internal physiological state and threat-reward decision making remains poorly understood. Here we confronted C. elegans worms with the decision whether to cross a hyperosmotic barrier presenting the threat of desiccation to reach a source of food odor. We identified a specific interneuron that controls this decision via top-down extrasynaptic aminergic potentiation of the primary osmosensory neurons to increase their sensitivity to the barrier. We also establish that food deprivation increases the worm's willingness to cross the dangerous barrier by suppressing this pathway. These studies reveal a potentially general neural circuit architecture for internal state control of threat-reward decision making.


Assuntos
Tomada de Decisões/fisiologia , Fome/fisiologia , Interneurônios/fisiologia , Animais , Comunicação Autócrina/fisiologia , Caenorhabditis elegans , Retroalimentação , Modelos Neurológicos , Rede Nervosa , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Recompensa
4.
Methods Enzymol ; 389: 305-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15313573

RESUMO

Caenorhabditis elegans has close homologs or orthologs of most mammalian (RGS) and G proteins, and mutants for all the RGS and G-protein genes of C. elegans have been generated. C. elegans RGS proteins can be matched to the specific Galpha proteins they regulate in vivo by comparing the defects in animals lacking or transgenically overexpressing an RGS protein with defects in a specific Galpha mutant. Transgenic expression of mutated RGS proteins or subdomains in C. elegans has also been used to carry out structure/function studies of RGS proteins. We propose that similar strategies can be used to understand the function of RGS proteins from other organisms by expressing them in C. elegans. This article describes general considerations regarding such experiments and provides detailed protocols for quantitatively measuring G-protein signaling phenotypes in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Genes de Helmintos , Humanos , Atividade Motora , Mutação , Oviposição , Estrutura Terciária de Proteína , Proteínas RGS/química
5.
Genetics ; 194(2): 363-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23525334

RESUMO

We developed a novel knockdown strategy to examine cell-specific gene function in Caenorhabditis elegans. In this strategy a null mutation in any gene is replaced with a genetically stable transgene that contains a wild-type copy of the gene fused to a 3' tag that targets the mRNA transcript for degradation by the host nonsense-mediated decay (NMD) machinery. In NMD-defective animals, tagged transgene mRNA is expressed at levels similar to the endogenous gene it replaced and is translated into wild-type protein that fully rescues gene function. Cell-specific activation of NMD cell autonomously knocks down transgene expression in specific cell types without affecting its expression or function in other cells of the organism. To demonstrate the utility of this system, we replaced the goa-1 gene, encoding the pan-neuronally expressed G-protein subunit GOA-1, with a degradation-tagged transgene. We then knocked down expression of the transgene from only two neurons, the hermaphrodite-specific neurons (HSNs), and showed that GOA-1 acts cell autonomously in the HSNs to inhibit egg-laying behavior.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes/métodos , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transgenes/genética
6.
J Vis Exp ; (79): e50693, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24121477

RESUMO

RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , Animais , Caenorhabditis elegans , Ensaios de Triagem em Larga Escala/métodos , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA de Cadeia Dupla/genética
7.
PLoS One ; 7(5): e37831, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629462

RESUMO

Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios Colinérgicos/metabolismo , Reguladores de Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/genética , Receptores de Dopamina D2
8.
Genetics ; 188(3): 579-90, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21515580

RESUMO

Dopamine acts through two classes of G protein-coupled receptor (D1-like and D2-like) to modulate neuron activity in the brain. While subtypes of D1- and D2-like receptors are coexpressed in many neurons of the mammalian brain, it is unclear how signaling by these coexpressed receptors interacts to modulate the activity of the neuron in which they are expressed. D1- and D2-like dopamine receptors are also coexpressed in the cholinergic ventral-cord motor neurons of Caenorhabditis elegans. To begin to understand how coexpressed dopamine receptors interact to modulate neuron activity, we performed a genetic screen in C. elegans and isolated mutants defective in dopamine response. These mutants were also defective in behaviors mediated by endogenous dopamine signaling, including basal slowing and swimming-induced paralysis. We used transgene rescue experiments to show that defects in these dopamine-specific behaviors were caused by abnormal signaling in the cholinergic motor neurons. To investigate the interaction between the D1- and D2-like receptors specifically in these cholinergic motor neurons, we measured the sensitivity of dopamine-signaling mutants and transgenic animals to the acetylcholinesterase inhibitor aldicarb. We found that D2 signaling inhibited acetylcholine release from the cholinergic motor neurons while D1 signaling stimulated release from these same cells. Thus, coexpressed D1- and D2-like dopamine receptors act antagonistically in vivo to modulate acetylcholine release from the cholinergic motor neurons of C. elegans.


Assuntos
Acetilcolinesterase/metabolismo , Caenorhabditis elegans/fisiologia , Dopamina/metabolismo , Proteínas de Helminto/metabolismo , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Acetilcolina/metabolismo , Aldicarb/farmacologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Inibidores da Colinesterase/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteínas de Helminto/genética , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética
9.
WormBook ; : 1-15, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18050501

RESUMO

Four biogenic amines: octopamine, tyramine, dopamine and serotonin act in C. elegans to modulate behavior in response to changing environmental cues. These neurotransmitters act at both neurons and muscles to affect egg laying, pharyngeal pumping, locomotion and learning. A variety of experimental approaches including genetic, imaging, biochemical and pharmacological analyses have been used to identify the enzymes and cells that make and release the amines and the cells and receptors that bind them. Dopamine and serotonin act through receptors and downstream signaling mechanisms similar to those that operate in the mammalian brain suggesting that C. elegans will provide a valuable model for understanding biogenic amine signaling in the brain.


Assuntos
Caenorhabditis elegans/fisiologia , Dopamina/fisiologia , Neurotransmissores/fisiologia , Octopamina/fisiologia , Serotonina/fisiologia , Tiramina/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA