Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 22(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513558

RESUMO

Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors-ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.


Assuntos
Galinhas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Limiar Gustativo , Animais , Aprendizagem da Esquiva , Bico , Cafeína/química , Catequina/química , Eritromicina/química , Expressão Gênica , Células HEK293 , Humanos , Ligantes , Nicotina/química , Quinina/química , Receptores Acoplados a Proteínas G/genética , Transfecção
2.
Poult Sci ; 94(8): 1928-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26049797

RESUMO

Taste perception is a crucial biological mechanism affecting food and water choices and consumption in the animal kingdom. Bitter taste perception is mediated by a G-protein-coupled receptor (GPCR) family-the taste 2 receptors (T2R)-and their downstream proteins, whereas sweet and umami tastes are mediated by the GPCR family -taste 1 receptors (T1R) and their downstream proteins. Taste receptors and their downstream proteins have been identified in extra-gustatory tissues in mammals, such as the lungs and gastrointestinal tract (GIT), and their GIT activation has been linked with different metabolic and endocrinic pathways in the GIT. The chicken genome contains three bitter taste receptors termed ggTas2r1, ggTas2r2, and ggTas2r7, and the sweet/umami receptors ggTas1r1 and ggTas1r3, but it lacks the sweet receptor ggTas1r2. The aim of this study was to identify and determine the expression of genes related to taste perception in the chicken GIT, both at the embryonic stage and in growing chickens. The results of this study demonstrate for the first time, using real-time PCR, expression of the chicken taste receptor genes ggTas2r1, ggTas2r2, ggTas2r7, ggTas1r1, and ggTas1r3 and of their downstream protein-encoding genes TRPM5, α-gustducin, and PLCß2 in both gustatory tissues-the palate and tongue, and extra-gustatory tissues-the proventriculus, duodenum, jejunum, ileum, cecum, and colon of embryonic day 19 (E19) and growing (21 d old) chickens. Expression of these genes suggests the involvement of taste pathways for sensing carbohydrates, amino acids and bitter compounds in the chicken GIT.


Assuntos
Embrião de Galinha/metabolismo , Galinhas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
3.
Poult Sci ; 96(7): 2206-2218, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339990

RESUMO

The sense of taste has a key role in nutrient sensing and food intake in animals. A standardized and simple method for determination of tastant-detection thresholds is required for chemosensory research in poultry. We established a 24-h, 2-alternative, forced-choice solution-consumption method and applied it to measure detection thresholds for 3 G-protein-coupled receptor-mediated taste modalities-bitter, sweet, and umami-in chicken. Four parameters were used to determine a significant response: 1) tastant-solution consumption; 2) water (tasteless) consumption; 3) total consumption (tastant and water together); 4) ratio of tastant consumption to total consumption. Our results showed that assignment of the taste solutions and a water control to 2 bottles on random sides of the pen can be reliably used for broiler chicks, even though 47% of the chicks groups demonstrated a consistently preferred side. The detection thresholds for quinine (bitter), L-monosodium glutamate (MSG) (umami), and sucrose (sweet) were determined to be 0.3 mM, 300 mM, and 1 M, respectively. The threshold results for quinine were similar to those for humans and rodents, but the chicks were found to be less sensitive to sucrose and MSG. The described method is useful for studying detection thresholds for tastants that have the potential to affect feed and water consumption in chickens.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/fisiologia , Comportamento de Escolha , Fisiologia/métodos , Limiar Gustativo , Animais , Comportamento Alimentar
4.
Sci Rep ; 7(1): 8223, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811548

RESUMO

Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.


Assuntos
Ligantes , Mutagênese , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Descoberta de Drogas , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Quinina/análogos & derivados , Quinina/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Papilas Gustativas/metabolismo
5.
J Agric Food Chem ; 62(52): 12512-20, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25427148

RESUMO

Bitter taste receptors (Tas2rs) and downstream effectors are responsible for mediating bitterness perception and regulation of food choice in mammals. Using RT-PCR, we demonstrated the expression of three Tas2rs and taste signal transduction molecules, α-gustducin, PLCß2, and TRPM5, in the palate, tongue, and gastrointestinal tract sections in chicken. The bitter tastant quinine activates all three chicken Tas2rs in vitro as shown using calcium-imaging assays of transfected cells. Administration of quinine postnatally or perinatally (both pre- and posthatch) to chickens increased the expression of Tas2r genes in the palate by 6.45-fold (ggTas2r1 postnatal treatment), 4.86-fold (ggTas2r1 perinatal treatment), and 4.48-fold (ggTas2r7 postnatal treatment) compared to the genes' expression in the naïve group respectively, and affected taste related gene expression in the duodenum. Whereas no-choice intake of quinine solution was not significantly lower than that of water in naïve chicks, the treatment groups postnatal, prenatal, and perinatal showed significantly lower intake of quinine by 56.1, 47.7, and 50.2%, respectively, suggesting a possible trend toward sensitization. These results open new venues toward unraveling the formative stages shaping food intake and nutrition in chicken.


Assuntos
Galinhas/genética , Duodeno/metabolismo , Palato/metabolismo , Paladar , Animais , Embrião de Galinha , Galinhas/fisiologia , Duodeno/efeitos dos fármacos , Expressão Gênica , Palato/efeitos dos fármacos , Quinina/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA