Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.590
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(1): 243-256.e18, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417861

RESUMO

Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.


Assuntos
Cognição/fisiologia , Suturas Cranianas/fisiopatologia , Craniossinostoses/fisiopatologia , Regeneração/fisiologia , Crânio/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Craniossinostoses/genética , Dura-Máter/patologia , Dura-Máter/fisiopatologia , Gelatina/farmacologia , Perfilação da Expressão Gênica , Força da Mão , Pressão Intracraniana/efeitos dos fármacos , Pressão Intracraniana/fisiologia , Locomoção/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Metacrilatos/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Crânio/patologia , Proteína 1 Relacionada a Twist/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
2.
Nature ; 627(8005): 754-758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093004

RESUMO

Shock-breakout emission is light that arises when a shockwave, generated by the core-collapse explosion of a massive star, passes through its outer envelope. Hitherto, the earliest detection of such a signal was at several hours after the explosion1, although a few others had been reported2-7. The temporal evolution of early light curves should provide insights into the shock propagation, including explosion asymmetry and environment in the vicinity, but this has been hampered by the lack of multiwavelength observations. Here we report the instant multiband observations of a type II supernova (SN 2023ixf) in the galaxy M101 (at a distance of 6.85 ± 0.15 Mpc; ref. 8), beginning at about 1.4 h after the explosion. The exploding star was a red supergiant with a radius of about 440 solar radii. The light curves evolved rapidly, on timescales of 1-2 h, and appeared unusually fainter and redder than predicted by the models9-11 within the first few hours, which we attribute to an optically thick dust shell before it was disrupted by the shockwave. We infer that the breakout and perhaps the distribution of the surrounding dust were not spherically symmetric.

3.
Immunity ; 53(2): 456-470.e6, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32758419

RESUMO

Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.


Assuntos
Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Memória Imunológica/imunologia , Imunoterapia Adotiva , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mitocôndrias/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/citologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nature ; 621(7977): 75-81, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37673990

RESUMO

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

5.
Genes Dev ; 35(9-10): 692-697, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888556

RESUMO

The conserved meiosis-specific kinetochore regulator, meikin (Moa1 in fission yeast) plays a central role in establishing meiosis-specific kinetochore function. However, the underlying molecular mechanisms remain elusive. Here, we show how Moa1 regulates centromeric cohesion protection, a function that has been previously attributed to shugoshin (Sgo1). Moa1 is known to associate with Plo1 kinase. We explore Plo1-dependent Rec8 phosphorylation and identify a key phosphorylation site required for cohesion protection. The phosphorylation of Rec8 by Moa1-Plo1 potentiates the activity of PP2A associated with Sgo1. This leads to dephosphorylation of Rec8 at another site, which thereby prevents cleavage of Rec8 by separase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Meiose/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Separase/metabolismo
6.
Cell ; 152(5): 1077-90, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434321

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that arise in connective tissue surrounding peripheral nerves. They occur sporadically in a subset of patients with neurofibromatosis type 1 (NF1). MPNSTs are highly aggressive, therapeutically resistant, and typically fatal. Using comparative transcriptome analysis, we identified CXCR4, a G-protein-coupled receptor, as highly expressed in mouse models of NF1-deficient MPNSTs, but not in nontransformed precursor cells. The chemokine receptor CXCR4 and its ligand, CXCL12, promote MPNST growth by stimulating cyclin D1 expression and cell-cycle progression through PI3-kinase (PI3K) and ß-catenin signaling. Suppression of CXCR4 activity either by shRNA or pharmacological inhibition decreases MPNST cell growth in culture and inhibits tumorigenesis in allografts and in spontaneous genetic mouse models of MPNST. We further demonstrate conservation of these activated molecular pathways in human MPNSTs. Our findings indicate a role for CXCR4 in NF1-associated MPNST development and identify a therapeutic target.


Assuntos
Comunicação Autócrina , Quimiocina CXCL12/metabolismo , Neoplasias de Bainha Neural/metabolismo , Neoplasias de Bainha Neural/patologia , Receptores CXCR4/metabolismo , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Neurofibromatose 1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
7.
Genes Dev ; 34(7-8): 580-597, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115408

RESUMO

Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.


Assuntos
Transtorno Autístico/genética , Córtex Cerebral/embriologia , Megalencefalia/genética , Neurogênese/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Córtex Cerebral/citologia , Deleção de Genes , Humanos , Megalencefalia/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , Organoides/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
8.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38108472

RESUMO

Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.


Assuntos
Dente , Animais , Camundongos , Dente Molar , Morfogênese/genética , Odontogênese/genética , Raiz Dentária
9.
Plant Cell ; 36(5): 1465-1481, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262477

RESUMO

Plant diseases are a constant and serious threat to agriculture and ecological biodiversity. Plants possess a sophisticated innate immunity system capable of detecting and responding to pathogen infection to prevent disease. Our understanding of this system has grown enormously over the past century. Early genetic descriptions of plant disease resistance and pathogen virulence were embodied in the gene-for-gene hypothesis, while physiological studies identified pathogen-derived elicitors that could trigger defense responses in plant cells and tissues. Molecular studies of these phenomena have now coalesced into an integrated model of plant immunity involving cell surface and intracellular detection of specific pathogen-derived molecules and proteins culminating in the induction of various cellular responses. Extracellular and intracellular receptors engage distinct signaling processes but converge on many similar outputs with substantial evidence now for integration of these pathways into interdependent networks controlling disease outcomes. Many of the molecular details of pathogen recognition and signaling processes are now known, providing opportunities for bioengineering to enhance plant protection from disease. Here we provide an overview of the current understanding of the main principles of plant immunity, with an emphasis on the key scientific milestones leading to these insights.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Transdução de Sinais , Imunidade Vegetal/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/imunologia , Plantas/imunologia , Plantas/microbiologia , Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Cell ; 149(1): 36-47, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464322

RESUMO

Eighty percent of malignant tumors that develop in the central nervous system are malignant gliomas, which are essentially incurable. Here, we discuss how recent sequencing studies are identifying unexpected drivers of gliomagenesis, including mutations in isocitrate dehydrogenase 1 and the NF-κB pathway, and how genome-wide analyses are reshaping the classification schemes for tumors and enhancing prognostic value of molecular markers. We discuss the controversies surrounding glioma stem cells and explore how the integration of new molecular data allows for the generation of more informative animal models to advance our knowledge of glioma's origin, progression, and treatment.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Glioma/genética , Glioma/fisiopatologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
11.
Nature ; 599(7884): 273-277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707283

RESUMO

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Prótons , Transdução de Sinais , Álcalis , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Ativação Enzimática , Proteínas F-Box/metabolismo , Concentração de Íons de Hidrogênio , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536757

RESUMO

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Assuntos
Arbovírus , Hemípteros , Oryza , Tenuivirus , Animais , Arbovírus/genética , Hemípteros/fisiologia , Tenuivirus/fisiologia , Insetos Vetores , Antivirais/metabolismo , Oryza/genética , Doenças das Plantas
13.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
14.
Trends Biochem Sci ; 47(12): 996-998, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985942

RESUMO

Altered global miRNA abundance is closely related to the occurrence of cancer. Recently, Qi et al. discovered that abnormal 1-nucleotide (nt)-shorter miRNA isoforms are widely accumulated in different human tumors. Ectopic expression of the plant immune protein RNA-dependent RNA polymerase (RDR)-1 can achieve a broad-spectrum antitumor effect by rescuing miRNA defects in cancer cells.


Assuntos
MicroRNAs , Neoplasias , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Polimerase Dependente de RNA , MicroRNAs/genética
15.
Trends Genet ; 39(10): 724-727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563056

RESUMO

Reference genomes facilitate trait improvement by aiding in the elucidation of causal genetic elements. Thanks to the recent release of a reference sequence for the faba bean, breeders and geneticists are poised to accelerate precision breeding and genetic improvement of this important crop.


Assuntos
Vicia faba , Vicia faba/genética , Melhoramento Vegetal , Fenótipo , Genoma de Planta/genética
16.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36846898

RESUMO

Gene expression regulation in eukaryotes is a multi-level process, including transcription, mRNA translation and protein turnover. Many studies have reported sophisticated transcriptional regulation during neural development, but the global translational dynamics are still ambiguous. Here, we differentiate human embryonic stem cells (ESCs) into neural progenitor cells (NPCs) with high efficiency and perform ribosome sequencing and RNA sequencing on both ESCs and NPCs. Data analysis reveals that translational controls engage in many crucial pathways and contribute significantly to regulation of neural fate determination. Furthermore, we show that the sequence characteristics of the untranslated region (UTR) might regulate translation efficiency. Specifically, genes with short 5'UTR and intense Kozak sequence are associated with high translation efficiency in human ESCs, whereas genes with long 3'UTR are related to high translation efficiency in NPCs. In addition, we have identified four biasedly used codons (GAC, GAT, AGA and AGG) and dozens of short open reading frames during neural progenitor differentiation. Thus, our study reveals the translational landscape during early human neural differentiation and provides insights into the regulation of cell fate determination at the translational level.


Assuntos
Biossíntese de Proteínas , Ribossomos , Humanos , Ribossomos/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular/genética , Regiões 5' não Traduzidas/genética , Fases de Leitura Aberta
17.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620036

RESUMO

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Mitocôndrias , Mitocôndrias/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpes Simples/patologia , Animais , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/patologia , Progressão da Doença , Chlorocebus aethiops
18.
Plant Cell ; 35(5): 1408-1428, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36748200

RESUMO

Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.


Assuntos
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
19.
PLoS Biol ; 21(7): e3002199, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486903

RESUMO

Microglia-mediated neuroinflammation is involved in various neurological diseases, including ischemic stroke, but the endogenous mechanisms preventing unstrained inflammation is still unclear. The anti-inflammatory role of transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) in macrophages and microglia has previously been identified. However, the endogenous mechanisms that how NR4A1 restricts unstrained inflammation remain elusive. Here, we observed that NR4A1 is up-regulated in the cytoplasm of activated microglia and localizes to processing bodies (P-bodies). In addition, we found that cytoplasmic NR4A1 functions as an RNA-binding protein (RBP) that directly binds and destabilizes Tnf mRNA in an N6-methyladenosine (m6A)-dependent manner. Remarkably, conditional microglial deletion of Nr4a1 elevates Tnf expression and worsens outcomes in a mouse model of ischemic stroke, in which case NR4A1 expression is significantly induced in the cytoplasm of microglia. Thus, our study illustrates a novel mechanism that NR4A1 posttranscriptionally regulates Tnf expression in microglia and determines stroke outcomes.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Fatores de Transcrição , Microglia , Inflamação , RNA Mensageiro
20.
Circ Res ; 134(5): 529-546, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38348657

RESUMO

BACKGROUND: Mature endothelial cells (ECs) are heterogeneous, with subtypes defined by tissue origin and position within the vascular bed (ie, artery, capillary, vein, and lymphatic). How this heterogeneity is established during the development of the vascular system, especially arteriovenous specification of ECs, remains incompletely characterized. METHODS: We used droplet-based single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization to define EC and EC progenitor subtypes from E9.5, E12.5, and E15.5 mouse embryos. We used trajectory inference to analyze the specification of arterial ECs (aECs) and venous ECs (vECs) from EC progenitors. Network analysis identified candidate transcriptional regulators of arteriovenous differentiation, which we tested by CRISPR (clustered regularly interspaced short palindromic repeats) loss of function in human-induced pluripotent stem cells undergoing directed differentiation to aECs or vECs (human-induced pluripotent stem cell-aECs or human-induced pluripotent stem cell-vECs). RESULTS: From the single-cell transcriptomes of 7682 E9.5 to E15.5 ECs, we identified 19 EC subtypes, including Etv2+Bnip3+ EC progenitors. Spatial transcriptomic analysis of 15 448 ECs provided orthogonal validation of these EC subtypes and established their spatial distribution. Most embryonic ECs were grouped by their vascular-bed types, while ECs from the brain, heart, liver, and lung were grouped by their tissue origins. Arterial (Eln, Dkk2, Vegfc, and Egfl8), venous (Fam174b and Clec14a), and capillary (Kcne3) marker genes were identified. Compared with aECs, embryonic vECs and capillary ECs shared fewer markers than their adult counterparts. Early capillary ECs with venous characteristics functioned as a branch point for differentiation of aEC and vEC lineages. CONCLUSIONS: Our results provide a spatiotemporal map of embryonic EC heterogeneity at single-cell resolution and demonstrate that the diversity of ECs in the embryo arises from both tissue origin and vascular-bed position. Developing aECs and vECs share common venous-featured capillary precursors and are regulated by distinct transcriptional regulatory networks.


Assuntos
Células Endoteliais , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Adulto , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente , Artérias , Encéfalo , Veias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA