RESUMO
Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.
Assuntos
Córtex Pré-Frontal , Receptor EphB2 , Comportamento Social , Animais , Camundongos , Encéfalo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptor EphB2/genética , Receptor EphB2/fisiologiaRESUMO
The emergence of highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that are resistant to the current COVID-19 vaccines highlights the need for continued development of broadly protective vaccines for the future. Here, we developed two messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines, TU88mCSA and ALCmCSA, using the ancestral SARS-CoV-2 spike sequence, optimized 5' and 3' untranslated regions (UTRs), and LNP combinations. Our data showed that these nanocomplexes effectively activate CD4+ and CD8+ T cell responses and humoral immune response and provide complete protection against WA1/2020, Omicron BA.1 and BQ.1 infection in hamsters. Critically, in Omicron BQ.1 challenge hamster models, TU88mCSA and ALCmCSA not only induced robust control of virus load in the lungs but also enhanced protective efficacy in the upper respiratory airways. Antigen-specific immune analysis in mice revealed that the observed cross-protection is associated with superior UTRs [Carboxylesterase 1d (Ces1d)/adaptor protein-3ß (AP3B1)] and LNP formulations that elicit robust lung tissue-resident memory T cells. Strong protective effects of TU88mCSA or ALCmCSA against both WA1/2020 and VOCs suggest that this mRNA-LNP combination can be a broadly protective vaccine platform in which mRNA cargo uses the ancestral antigen sequence regardless of the antigenic drift. This approach could be rapidly adapted for clinical use and timely deployment of vaccines against emerging and reemerging VOCs.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Cricetinae , Animais , Humanos , Camundongos , RNA Mensageiro/genética , Vacinas contra COVID-19/genética , Vacinas de mRNA , SARS-CoV-2/genética , COVID-19/prevenção & controle , Regiões 3' não Traduzidas , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8+ T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen-bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2180-188)-encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti-programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.
Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas de mRNA , Amino Álcoois , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Decanoatos , Memória Imunológica , Lipossomos , Linfonodos , Camundongos , Metástase Neoplásica/prevenção & controle , Neoplasias/terapia , Ovalbumina , Vacinas de mRNA/uso terapêuticoRESUMO
Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Linfangioleiomiomatose/tratamento farmacológico , RNA Mensageiro/administração & dosagem , Animais , Feminino , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Lipossomos/química , Lipossomos/farmacologia , Pulmão/citologia , Pulmão/patologia , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Linfangioleiomiomatose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , RNA Interferente Pequeno/metabolismoRESUMO
Oesophageal squamous cell carcinoma (ESCC) contributes to high mortality. Modulating ferroptosis may reverse resistance to radiotherapy. This article was to explore the ubiquitination modification of KLF5 and its effect on ferroptosis in ESCC. KLF5 was under-expressed by shRNA plasmids in the cells and ROS levels were analysed by flow cytometry, ferroptotic gene expression was detected by qRT-PCR, MDA and GSH levels were determined by ELISA, cell morphology was observed by transmission electron microscopy, and Fe ion levels were analysed by immunofluorescence. Cells were treated with Ferrostatin-1 and NAC and analysed for cell proliferation by colony formation assay, cell migration and invasion by Transwell assays, and apoptosis by flow cytometry. DNA damage in cells was also analysed using comet assay, EdU doping assay, γH2AX fluorescence, DNA-PKcs and PCR. NEDD4L and KLF5 binding was analysed by immunoprecipitation. Changes in ferroptosis, DNA damage and resistance were analysed in cells with both silencing NEDD4L and KLF5. Changes in tumour resistance to radiation were analysed in mice underexpressing NEDD4L and KLF5. Low expression of KLF5 significantly promotes cellular lipid peroxidation levels, with decreased expression of SOD and GPX4, and increased expression of ACSL4. Concurrently, MDA levels deplete GSH, and cells exhibit typical ferroptotic morphology with increased Fe2+ content. KLF5 inhibition results in enhanced cellular clonogenicity, migration and invasion activities, reduced apoptosis, increased tail DNA, nuclear EdU incorporation, nuclear γH2AX foci and elevated expression of DNA-PKcs, LIG4, RAD9B and BMI1. Ferrostatin-1 and NAC reverse these effects. NEDD4L ubiquitination modifies and degrades KLF5, with NEDD4L/KLF5 inhibition mitigating cellular ferroptosis and DNA damage, thereby promoting radiosensitivity both in vitro and in vivo. NEDD4L increases radiosensitivity by accelerating cellular ferroptosis via ubiquitination modification of KLF5.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Fatores de Transcrição Kruppel-Like , Ubiquitina-Proteína Ligases Nedd4 , Tolerância a Radiação , Ubiquitinação , Ferroptose/genética , Humanos , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Camundongos , Tolerância a Radiação/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Linhagem Celular Tumoral , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Dano ao DNA , Movimento Celular , Apoptose , Camundongos Nus , Estabilidade Proteica/efeitos da radiaçãoRESUMO
The impact of Borrelia miyamotoi on human health, facilitated by the expanding geographical distribution and increasing population of Ixodes ticks, remains obscure in the context of global climate change. We employed multiple models to evaluate the effect of global climate change on the risk of B. miyamotoi worldwide across various scenarios. The habitat suitability index of four primary vector tick species for B. miyamotoi, including Ixodes persulcatus, Ixodes ricinus, Ixodes pacificus and Ixodes scapularis, was projected using a boosted regression tree model, considering multiple shared socio-economic pathway scenarios over various time periods. The modelling analysis reveals that, apart from I. scapularis, future global warming will result in a northward shift in the other three vector tick species and a gradual reduction in suitable habitats. Random forest models indicate consistent changes in B. miyamotoi and its primary tick species, with potential risk areas shrinking and shifting northward, particularly in the eastern USA, northeastern and northern Europe and northeast Asia. These findings highlight the urgent need for enhanced active surveillance of B. miyamotoi infection in primary vector tick species across projected potential risk areas. The effect of climate change on B. miyamotoi distribution might have significant implications for public health decision-making regarding tick-borne pathogens.
Assuntos
Borrelia , Mudança Climática , Ecossistema , Ixodes , Animais , Ixodes/microbiologia , Humanos , Infecções por Borrelia/epidemiologia , Infecções por Borrelia/microbiologia , Vetores Aracnídeos/microbiologiaRESUMO
After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes , Cinética , Anticorpos Antivirais/sangue , Reinfecção/epidemiologiaRESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants raises concerns regarding the effectiveness of immunity acquired from previous Omicron subvariants breakthrough infections (BTIs) or reinfections (RIs) against the current circulating Omicron subvariants. In this study, we prospectively investigate the dynamic changes of virus-specific antibody and T cell responses among 77 adolescents following Omicron BA.2.3 BTI with or without subsequent Omicron BA.5 RI. Notably, the neutralizing antibodies (NAbs) titers against various detected SARS-CoV-2 variants, especially the emerging Omicron CH.1.1, XBB.1.5, XBB.1.16, EG.5.1, and JN.1 subvariants, exhibited a significant decrease along the time. A lower level of IgG and NAbs titers post-BTI was found to be closely associated with subsequent RI. Elevated NAbs levels and shortened antigenic distances were observed following Omicron BA.5 RI. Robust T cell responses against both Omicron BA.2- and CH.1.1-spike peptides were observed at each point visited. The exposure to Omicron BA.5 promoted phenotypic differentiation of virus-specific memory T cells, even among the non-seroconversion adolescents. Therefore, updated vaccines are needed to provide effective protection against newly emerging SARS-CoV-2 variants among adolescents.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Células T de Memória , Reinfecção , SARS-CoV-2 , Humanos , Adolescente , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Masculino , Reinfecção/imunologia , Reinfecção/virologia , Feminino , Células T de Memória/imunologia , Estudos Prospectivos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Formação de Anticorpos , Glicoproteína da Espícula de Coronavírus/imunologia , Memória Imunológica , Criança , Linfócitos T/imunologiaRESUMO
OBJECTIVE: To investigate the mechanism by which cancer-associated fibroblasts (CAFs) affect the growth and immune evasion of lung cancer cells. METHODS: Initially, datasets comparing CAFs with normal fibroblasts were downloaded from the GEO dataset GSE48397. Genes with the most significant differential expression were selected and validated using clinical data. Subsequently, CAFs were isolated, and the selected genes were knocked down in CAFs. Co-culture experiments were conducted with H1299 or A549 cells to analyze changes in lung cancer cell growth, migration, and immune evasion in vitro and in vivo. To further elucidate the upstream regulatory mechanism, relevant ChIP-seq data were downloaded from the GEO database, and the regulatory relationships were validated through ChIP-qPCR and luciferase reporter assays. RESULTS: OLR1 was significantly overexpressed in CAFs and strongly correlated with adverse prognosis in lung cancer patients. Knockdown of OLR1 markedly inhibited CAFs' support for the growth and immune evasion of lung cancer cells in vitro and in vivo. ChIP-seq results demonstrated that PRRX1 can promote OLR1 expression by recruiting H3K27ac and H3K4me3, thereby activating CAFs. Knockdown of PRRX1 significantly inhibited CAFs' function, while further overexpression of OLR1 restored CAFs' support for lung cancer cell growth, migration, and immune evasion. CONCLUSION: PRRX1 promotes OLR1 expression by recruiting H3K27ac and H3K4me3, activating CAFs, and thereby promoting the growth, migration, and immune evasion of lung cancer cells.
RESUMO
BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.
RESUMO
BACKGROUND: Distinguishing warfarin-related bleeding risk at the bedside remains challenging. Studies indicate that warfarin therapy should be suspended when international normalized ratio (INR) ≥ 4.5, or it may sharply increase the risk of bleeding. We aim to develop and validate a model to predict the high bleeding risk in valve replacement patients during hospitalization. METHOD: Cardiac valve replacement patients from January 2016 to December 2021 across Nanjing First Hospital were collected. Five different machine-learning (ML) models were used to establish the prediction model. High bleeding risk was an INR ≥4.5. The area under the receiver operating characteristic curve (AUC) was used for evaluating the prediction performance of different models. The SHapley Additive exPlanations (SHAP) was used for interpreting the model. We also compared ML with ATRIA score and ORBIT score. RESULTS: A total of 2376 patients were finally enrolled in this model, 131 (5.5%) of whom experienced the high bleeding risk after anticoagulation therapy of warfarin during hospitalization. The extreme gradient boosting (XGBoost) exhibited the best overall prediction performance (AUC: 0.882, confidence interval [CI] 0.817-0.946, Brier score, 0.158) compared to other prediction models. It also shows superior performance compared with ATRIA score and ORBIT score. The top 5 most influential features in XGBoost model were platelet, thyroid stimulation hormone, body surface area, serum creatinine and white blood cell. CONCLUSION: A model for predicting high bleeding risk in valve replacement patients who treated with warfarin during hospitalization was successfully developed by using machine learning, which may well assist clinicians to identify patients at high risk of bleeding and allow timely adjust therapeutic strategies in evaluating individual patient.
Assuntos
Anticoagulantes , Varfarina , Humanos , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Valvas Cardíacas/cirurgia , Aprendizado de MáquinaRESUMO
Loss-of-function mutations in Angiopoietin-like 3 (Angptl3) are associated with lowered blood lipid levels, making Angptl3 an attractive therapeutic target for the treatment of human lipoprotein metabolism disorders. In this study, we developed a lipid nanoparticle delivery platform carrying Cas9 messenger RNA (mRNA) and guide RNA for CRISPR-Cas9-based genome editing of Angptl3 in vivo. This system mediated specific and efficient Angptl3 gene knockdown in the liver of wild-type C57BL/6 mice, resulting in profound reductions in serum ANGPTL3 protein, low density lipoprotein cholesterol, and triglyceride levels. Our delivery platform is significantly more efficient than the FDA-approved MC-3 LNP, the current gold standard. No evidence of off-target mutagenesis was detected at any of the nine top-predicted sites, and no evidence of toxicity was detected in the liver. Importantly, the therapeutic effect of genome editing was stable for at least 100 d after a single dose administration. This study highlights the potential of LNP-mediated delivery as a specific, effective, and safe platform for Cas9-based therapeutics.
Assuntos
Proteínas Semelhantes a Angiopoietina , Proteína 9 Associada à CRISPR/genética , Portadores de Fármacos , Edição de Genes , Lipídeos , Fígado/metabolismo , Nanopartículas/química , RNA Guia de Cinetoplastídeos , RNA Mensageiro , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/farmacocinética , RNA Guia de Cinetoplastídeos/farmacologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/farmacocinética , RNA Mensageiro/farmacologiaRESUMO
The development of deep-sea floating offshore wind power (FOWP) is the key to fully utilizing water resources to enhance wind resources in the years ahead, and then the project is still in its initial stage, and identifying risks is a crucial step before promoting a significant undertaking. This paper proposes a framework for identifying risks in deep-sea FOWP projects. First, this paper identifies 16 risk criteria and divides them into 5 groups to establish a criteria system. Second, hesitant fuzzy linguistic term set (HFLTS) and triangular fuzzy number (TFN) are utilized to gather and describe the criterion data to ensure the robustness and completeness of the criterion data. Third, extending the method for removal effects of criteria (MEREC) to the HFLTS environment through the conversion of TFNs, under the influence of subjective preference and objective fairness, a weighting method combining analytic network process (ANP) and MEREC is utilized to calculate criteria weights, and the trust relationship and consistency between experts are used to calculate the expert weights to avoid the subjective weighting given by experts arbitrariness. Fourth, the study's findings indicated that the overall risk level of the deep-sea FOWP projects is "medium." Fifth, sensitivity and comparative analyses were conducted to test the reliability of the assessment outcomes. lastly, this research proposes risk management measures for the deep-sea FOWP project's establishment from economic, policy, technology, environment, and management aspects.
Assuntos
Lógica Fuzzy , Vento , Confiança , Reprodutibilidade dos Testes , Monitoramento Ambiental , Medição de Risco , LinguísticaRESUMO
mRNA vaccines have brought about a great revolution in the vaccine fields owing to their simplicity and adaptability in antigen design, potential to induce both humoral and cell-mediated immune responses and demonstrated high efficacy, and rapid and low-cost production by using the same manufacturing platform for different mRNA vaccines. Multiple mRNA vaccines have been investigated for both infectious diseases and cancers, showing significant superiority to other types of vaccines. Although great success of mRNA vaccines has been achieved in the control of the coronavirus disease 2019 pandemic, there are still multiple challenges for the future development of mRNA vaccines. In this review, the most recent developments of mRNA vaccines against both infectious diseases and cancers are summarized for an overview of this field. Moreover, the challenges are also discussed on the basis of these developments.
Assuntos
COVID-19 , Doenças Transmissíveis , Neoplasias , COVID-19/prevenção & controle , Humanos , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNARESUMO
Biomining processes utilize microorganisms, such as Acidithiobacillus, to extract valuable metals by producing sulfuric acid and ferric ions that dissolve sulfidic minerals. However, excessive production of these compounds can result in metal structure corrosion and groundwater contamination. Synthetic biology offers a promising solution to improve Acidithiobacillus strains for sustainable, eco-friendly, and cost-effective biomining, but genetic engineering of these slow-growing microorganisms is challenging with current inefficient and time-consuming methods. To address this, we established a CRISPR-dCas9 system for gene knockdown in A. ferridurans JAGS, successfully downregulating the transcriptional levels of two genes involved in sulfur oxidation. More importantly, we constructed an all-in-one CRISPR-Cas9 system for fast and efficient genome editing in A. ferridurans JAGS, achieving seamless gene deletion (HdrB3), promoter substitution (Prus to Ptac), and exogenous gene insertion (GFP). Additionally, we created a HdrB-Rus double-edited strain and performed biomining experiments to extract Ni from pyrrhotite tailings. The engineered strain demonstrated a similar Ni recovery rate to wild-type A. ferridurans JAGS but with significantly lower production of iron ions and sulfuric acid in leachate. These high-efficient CRISPR systems provide a powerful tool for studying gene functions and creating useful recombinants for synthetic biology-assisted biomining applications in the future.
Assuntos
Acidithiobacillus , Ferro , Oxirredução , Engenharia Genética , Metais , Acidithiobacillus/genéticaRESUMO
Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.
Assuntos
Bartonella , Coinfecção , Leptospira , Animais , Bartonella/genética , China/epidemiologia , Filogenia , Roedores/microbiologia , Musaranhos/microbiologiaRESUMO
BACKGROUND: We aimed to compare differences in infant feeding patterns (breastfeeding and complementary food supplementation) between children with the autism spectrum disorder (ASD) and typically developing (TD) children through a multicentre study. The relationship between these patterns and later core symptoms and neurodevelopment in children with ASD was also investigated. METHODS: We analysed breastfeeding and complementary feeding patterns in 1389 children with ASD and 1190 TD children. The Children Neuropsychological and Behavior Scale-Revision 2016 (CNBS-R2016) was used to assess neurodevelopmental levels. The Autism Behavior Checklist (ABC), Social Responsiveness Scale (SRS), Childhood Autism Rating Scale (CARS), and ASD Warning Behavior Subscale of the CNBS-R2016 were used to assess ASD symptoms. RESULTS: Children with ASD had a shorter breastfeeding duration in infancy (8 (3-12) months vs. 10 (6-14) months, P < 0.001), later introduction of complementary foods (P < 0.001), and poorer acceptance of complementary foods (P < 0.001) than TD children. Total ABC and CARS scores were lower in the group of children with ASD who had been breastfed for 12 months or more than in the group who had been breastfed for less than 6 months. Children with ASD who were given complementary food after 6 months had lower general quotient (GQ), adaptive ability, fine motor and language scores than those who were given complementary food within 4-6 months. Children with ASD with poor acceptance of complementary foods had higher ABC and SRS scores and lower gross motor scores than those who had good acceptance. CONCLUSIONS: Children with ASD have a shorter duration of breastfeeding, a later introduction of complementary foods, and poorer acceptance of complementary foods than TD children. These feeding patterns may be related to the symptoms and growth of children with ASD. The research suggests that continued breastfeeding for longer than 12 months may be beneficial in reducing ASD symptoms and that infants who have difficulty introducing complementary foods should be followed up for neurodevelopment. TRIAL REGISTRATION: The ethics committee of the Children's Hospital of Chongqing Medical University approved the study. Approval Number: (2018) IRB (STUDY) NO. 121, and registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2000031194, registered on 23/03/2020).
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Lactente , Transtorno do Espectro Autista/psicologia , Transtorno Autístico/complicações , Suplementos Nutricionais , Comportamento AlimentarRESUMO
BACKGROUND: Outbreaks of monkeypox have been ongoing in non-endemic countries since May 2022. A thorough assessment of its global zoonotic niche and potential transmission risk is lacking. METHODS: We established an integrated database on global monkeypox virus (MPXV) occurrence during 1958 - 2022. Phylogenetic analysis was performed to examine the evolution of MPXV and effective reproductive number (Rt) was estimated over time to examine the dynamic of MPXV transmissibility. The potential ecological drivers of zoonotic transmission and inter-regional transmission risks of MPXV were examined. RESULTS: As of 24 July 2022, a total of 49 432 human patients with MPXV infections have been reported in 78 countries. Based on 525 whole genome sequences, two main clades of MPXV were formed, of which Congo Basin clade has a higher transmissibility than West African clade before the 2022-monkeypox, estimated by the overall Rt (0.81 vs. 0.56), and the latter significantly increased in the recent decade. Rt of 2022-monkeypox varied from 1.14 to 4.24 among the 15 continuously epidemic countries outside Africa, with the top three as Peru (4.24, 95% CI: 2.89-6.71), Brazil (3.45, 95% CI: 1.62-7.00) and the United States (2.44, 95% CI: 1.62-3.60). The zoonotic niche of MPXV was associated with the distributions of Graphiurus lorraineus and Graphiurus crassicaudatus, the richness of Rodentia, and four ecoclimatic indicators. Besides endemic areas in Africa, more areas of South America, the Caribbean States, and Southeast and South Asia are ecologically suitable for the occurrence of MPXV once the virus has invaded. Most of Western Europe has a high-imported risk of monkeypox from Western Africa, whereas France and the United Kingdom have a potential imported risk of Congo Basin clade MPXV from Central Africa. Eleven of the top 15 countries with a high risk of MPXV importation from the main countries of 2022-monkeypox outbreaks are located at Europe with the highest risk in Italy, Ireland and Poland. CONCLUSIONS: The suitable ecological niche for MPXV is not limited to Africa, and the transmissibility of MPXV was significantly increased during the 2022-monkeypox outbreaks. The imported risk is higher in Europe, both from endemic areas and currently epidemic countries. Future surveillance and targeted intervention programs are needed in its high-risk areas informed by updated prediction.
Assuntos
Mpox , Humanos , Mpox/epidemiologia , Filogenia , Surtos de Doenças , Estudos Retrospectivos , BrasilRESUMO
BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause difficulty with communication and social interactions as well as complicated family dynamics. Digital health interventions can reduce treatment costs and promote healthy lifestyle changes. These therapies can be adjunctive or replace traditional treatments. However, issues with cooperation and compliance prevent preschool patients with ASD from applying these tools. In this open-label, randomized controlled trial, we developed a nonwearable digital therapy called virtual reality-incorporated cognitive behavioral therapy (VR-CBT). OBJECTIVE: The aim of this study was to assess the adjunctive function of VR-CBT by comparing the effects of VR-CBT plus learning style profile (LSP) intervention with those of LSP-only intervention in preschool children with ASD. METHODS: This trial was performed in China on 78 preschool children (age 3-6 years, IQ>70) diagnosed with ASD who were randomized to receive a 20-week VR-CBT plus LSP intervention (intervention group, 39/78, 50%) or LSP intervention only (control group, 39/78, 50%). The primary outcome was the change of scores from baseline to week 20, assessed by using the parent-rated Autism Behavior Checklist (ABC). Secondary outcomes included the Childhood Autism Rating Scale (CARS), Attention-Deficit/Hyperactivity Disorder Rating Scale-IV (ADHD-RS-IV), and behavioral performance data (accuracy and reaction time) in go/no-go tasks. All primary and secondary outcomes were analyzed in the intention-to-treat population. RESULTS: After the intervention, there was an intervention effect on total ABC (ß=-5.528; P<.001) and CARS scores (ß=-1.365; P=.02). A similar trend was observed in the ABC subscales: sensory (ß=-1.133; P=.047), relating (ß=-1.512; P=.03), body and object use (ß=-1.211; P=.03), and social and self-help (ß=-1.593; P=.03). The intervention also showed statistically significant effects in improving behavioral performance (go/no-go task, accuracy, ß=2.923; P=.04). Moreover, a significant improvement of ADHD hyperactivity-impulsivity symptoms was observed in 53 children with comorbid ADHD based on ADHD-RS-IV (ß=-1.269; P=.02). No statistically significant intervention effect was detected in the language subscale of ABC (ß=-.080; P=.83). Intervention group girls had larger improvements in ABC subscales, that is, sensory and body and object use and in the CARS score and accuracy of go/no-go task (all P<.05) than the control group girls. Statistically significant intervention effects could be observed in hyperactivity-impulsivity symptoms in the intervention group boys with comorbid ADHD compared with those in the control group boys (ß=-1.333; P=.03). CONCLUSIONS: We found potentially positive effects of nonwearable digital therapy plus LSP on core symptoms associated with ASD, leading to a modest improvement in the function of sensory, motor, and response inhibition, while reducing impulsivity and hyperactivity in preschoolers with both ASD and ADHD. VR-CBT was found to be an effective and feasible adjunctive digital tool. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100053165; http://www.chictr.org.cn/showproj.aspx?proj=137016.
Assuntos
Transtorno do Espectro Autista , Terapia Cognitivo-Comportamental , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Povo Asiático , Transtorno do Espectro Autista/terapia , Transtorno Autístico , China , Terapia de Exposição à Realidade VirtualRESUMO
Rising concerns about climate change and sustainable energy have attracted efforts towards developing environmentally friendly alternatives to fossil fuels. Biosynthesis of n-butane, a highly desirable petro-chemical, fuel additive and diluent in the oil industry, remains a challenge. In this work, we first engineered enzymes Tes, Car and AD in the termination module to improve the selectivity of n-butane biosynthesis, and ancestral reconstruction and a synthetic RBS significantly improved the AD abundance. Next, we did ribosome binding site (RBS) calculation to identify potential metabolic bottlenecks, and then mitigated the bottleneck with RBS engineering and precursor propionyl-CoA addition. Furthermore, we employed a model-assisted strain design and a nonrepetitive extra-long sgRNA arrays (ELSAs) and quorum sensing assisted CRISPRi to facilitate a dynamic two-stage fermentation. Through systems engineering, n-butane production was increased by 168-fold from 0.04 to 6.74 mg/L. Finally, the maximum n-butane production from acetate was predicted using parsimonious flux balance analysis (pFBA), and we achieved n-butane production from acetate produced by electrocatalytic CO reduction. Our findings pave the way for selectively producing n-butane from renewable carbon source.