RESUMO
Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.
Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , DNA , Edição de Genes , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/metabolismo , DNA/genética , Edição de Genes/métodos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Células HEK293 , Domínios Proteicos , Genoma Humano , Modelos Moleculares , Estrutura Terciária de Proteína , Conformação de Ácido Nucleico , Biocatálise , Magnésio/química , Magnésio/metabolismoRESUMO
The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.
Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Complexos Multiproteicos , Humanos , Endossomos/metabolismo , Transporte Proteico , Proteínas/metabolismo , Complexos Multiproteicos/metabolismoRESUMO
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Assuntos
Endossomos , Transporte Proteico , Nexinas de Classificação , Endossomos/metabolismo , Humanos , Animais , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genéticaRESUMO
N(6)-methyladenosine (m(6)A) is the most abundant internal modification in mammalian mRNA. This modification is reversible and non-stoichiometric and adds another layer to the dynamic control of mRNA metabolism. The stability of m(6)A-modified mRNA is regulated by an m(6)A reader protein, human YTHDF2, which recognizes m(6)A and reduces the stability of target transcripts. Looking at additional functional roles for the modification, we find that another m(6)A reader protein, human YTHDF1, actively promotes protein synthesis by interacting with translation machinery. In a unified mechanism of m(6)A-based regulation in the cytoplasm, YTHDF2-mediated degradation controls the lifetime of target transcripts, whereas YTHDF1-mediated translation promotion increases translation efficiency, ensuring effective protein production from dynamic transcripts that are marked by m(6)A. Therefore, the m(6)A modification in mRNA endows gene expression with fast responses and controllable protein production through these mechanisms.
Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Humanos , Fatores de Iniciação de Peptídeos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismoRESUMO
N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.
Assuntos
Adenina/análogos & derivados , Chlamydomonas reinhardtii/genética , Sítio de Iniciação de Transcrição , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Chlamydomonas reinhardtii/metabolismo , DNA de Algas/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Nucleossomos/metabolismo , Transcrição GênicaRESUMO
Paused RNA polymerase (Pol II) is a pervasive feature of Drosophila embryos and mammalian stem cells, but its role in development is uncertain. Here, we demonstrate that a spectrum of paused Pol II determines the "time to synchrony"-the time required to achieve coordinated gene expression across the cells of a tissue. To determine whether synchronous patterns of gene activation are significant in development, we manipulated the timing of snail expression, which controls the coordinated invagination of â¼1,000 mesoderm cells during gastrulation. Replacement of the strongly paused snail promoter with moderately paused or nonpaused promoters causes stochastic activation of snail expression and increased variability of mesoderm invagination. Computational modeling of the dorsal-ventral patterning network recapitulates these variable and bistable gastrulation profiles and emphasizes the importance of timing of gene activation in development. We conclude that paused Pol II and transcriptional synchrony are essential for coordinating cell behavior during morphogenesis.
Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Dados de Sequência Molecular , Morfogênese , Regiões Promotoras GenéticasRESUMO
Aberrant mitophagy has been implicated in a broad spectrum of disorders. PINK1, Parkin, and ubiquitin have pivotal roles in priming mitophagy. However, the entire regulatory landscape and the precise control mechanisms of mitophagy remain to be elucidated. Here, we uncover fundamental mitophagy regulation involving PINK1 and a non-canonical role of the mitochondrial Tu translation elongation factor (TUFm). The mitochondrion-cytosol dual-localized TUFm interacts with PINK1 biochemically and genetically, which is an evolutionarily conserved Parkin-independent route toward mitophagy. A PINK1-dependent TUFm phosphoswitch at Ser222 determines conversion from activating to suppressing mitophagy. PINK1 modulates differential translocation of TUFm because p-S222-TUFm is restricted predominantly to the cytosol, where it inhibits mitophagy by impeding Atg5-Atg12 formation. The self-antagonizing feature of PINK1/TUFm is critical for the robustness of mitophagy regulation, achieved by the unique kinetic parameters of p-S222-TUFm, p-S65-ubiquitin, and their common kinase PINK1. Our findings provide new mechanistic insights into mitophagy and mitophagy-associated disorders.
Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mitofagia , Fator Tu de Elongação de Peptídeos/metabolismo , Proteínas Quinases/metabolismo , Animais , Citosol/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Células HeLa , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fator Tu de Elongação de Peptídeos/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Transporte Proteico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Quantum key distribution (QKD)1,2 has the potential to enable secure communication and information transfer3. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres4; this distance was later extended to the 100-kilometre scale5,6 with decoy-state QKD and more recently to the 500-kilometre scale7-10 with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory11-14. However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area15. Quantum repeaters16,17 could in principle provide a viable option for such a global network, but they cannot be deployed using current technology18. Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.
RESUMO
The causal connectivity of a network is often inferred to understand network function. It is arguably acknowledged that the inferred causal connectivity relies on the causality measure one applies, and it may differ from the network's underlying structural connectivity. However, the interpretation of causal connectivity remains to be fully clarified, in particular, how causal connectivity depends on causality measures and how causal connectivity relates to structural connectivity. Here, we focus on nonlinear networks with pulse signals as measured output, e.g., neural networks with spike output, and address the above issues based on four commonly utilized causality measures, i.e., time-delayed correlation coefficient, time-delayed mutual information, Granger causality, and transfer entropy. We theoretically show how these causality measures are related to one another when applied to pulse signals. Taking a simulated Hodgkin-Huxley network and a real mouse brain network as two illustrative examples, we further verify the quantitative relations among the four causality measures and demonstrate that the causal connectivity inferred by any of the four well coincides with the underlying network structural connectivity, therefore illustrating a direct link between the causal and structural connectivity. We stress that the structural connectivity of pulse-output networks can be reconstructed pairwise without conditioning on the global information of all other nodes in a network, thus circumventing the curse of dimensionality. Our framework provides a practical and effective approach for pulse-output network reconstruction.
RESUMO
Despite the substantial evidence on the health effects of short-term exposure to ambient fine particles (PM2.5), including increasing studies focusing on those from wildland fire smoke, the impacts of long-term wildland fire smoke PM2.5 exposure remain unclear. We investigated the association between long-term exposure to wildland fire smoke PM2.5 and nonaccidental mortality and mortality from a wide range of specific causes in all 3,108 counties in the contiguous United States, 2007 to 2020. Controlling for nonsmoke PM2.5, air temperature, and unmeasured spatial and temporal confounders, we found a nonlinear association between 12-mo moving average concentration of smoke PM2.5 and monthly nonaccidental mortality rate. Relative to a month with the long-term smoke PM2.5 exposure below 0.1 µg/m3, nonaccidental mortality increased by 0.16 to 0.63 and 2.11 deaths per 100,000 people per month when the 12-mo moving average of PM2.5 concentration was of 0.1 to 5 and 5+ µg/m3, respectively. Cardiovascular, ischemic heart disease, digestive, endocrine, diabetes, mental, and chronic kidney disease mortality were all found to be associated with long-term wildland fire smoke PM2.5 exposure. Smoke PM2.5 contributed to approximately 11,415 nonaccidental deaths/y (95% CI: 6,754, 16,075) in the contiguous United States. Higher smoke PM2.5-related increases in mortality rates were found for people aged 65 and above. Positive interaction effects with extreme heat were also observed. Our study identified the detrimental effects of long-term exposure to wildland fire smoke PM2.5 on a wide range of mortality outcomes, underscoring the need for public health actions and communications that span the health risks of both short- and long-term exposure.
Assuntos
Exposição Ambiental , Material Particulado , Fumaça , Humanos , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Fumaça/efeitos adversos , Fumaça/análise , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Feminino , Masculino , Incêndios Florestais , Mortalidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , IdosoRESUMO
Endosomal membrane trafficking is mediated by specific protein coats and formation of actin-rich membrane domains. The Retromer complex coordinates with sorting nexin (SNX) cargo adaptors including SNX27, and the SNX27-Retromer assembly interacts with the Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex which nucleates actin filaments establishing the endosomal recycling domain. Crystal structures, modeling, biochemical, and cellular validation reveal how the FAM21 subunit of WASH interacts with both Retromer and SNX27. FAM21 binds the FERM domain of SNX27 using acidic-Asp-Leu-Phe (aDLF) motifs similar to those found in the SNX1 and SNX2 subunits of the ESCPE-1 complex. Overlapping FAM21 repeats and a specific Pro-Leu containing motif bind three distinct sites on Retromer involving both the VPS35 and VPS29 subunits. Mutation of the major VPS35-binding site does not prevent cargo recycling; however, it partially reduces endosomal WASH association indicating that a network of redundant interactions promote endosomal activity of the WASH complex. These studies establish the molecular basis for how SNX27-Retromer is coupled to the WASH complex via overlapping and multiplexed motif-based interactions required for the dynamic assembly of endosomal membrane recycling domains.
Assuntos
Endossomos , Nexinas de Classificação , Proteínas de Transporte Vesicular , Humanos , Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/química , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Ligação Proteica , Cristalografia por Raios X , Sítios de Ligação , Modelos MolecularesRESUMO
The brain is a complex tissue whose function relies on coordinated anatomical and molecular features. However, the molecular annotation of the spatial organization of the brain is currently insufficient. Here, we describe microfluidic indexing-based spatial assay for transposase-accessible chromatin and RNA-sequencing (MISAR-seq), a method for spatially resolved joint profiling of chromatin accessibility and gene expression. By applying MISAR-seq to the developing mouse brain, we study tissue organization and spatiotemporal regulatory logics during mouse brain development.
Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Camundongos , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA , Encéfalo , Expressão Gênica , Perfilação da Expressão GênicaRESUMO
Hundreds of plant species have been domesticated to feed human civilization, while some crops have undergone de-domestication into agricultural weeds, threatening global food security. To understand the genetic and epigenetic basis of crop domestication and de-domestication, we generated DNA methylomes from 95 accessions of wild rice (Oryza rufipogon L.), cultivated rice (Oryza sativa L.) and weedy rice (O. sativa f. spontanea). We detected a significant decrease in DNA methylation over the course of rice domestication but observed an unexpected increase in DNA methylation through de-domestication. Notably, DNA methylation changes occurred in distinct genomic regions for these 2 opposite stages. Variation in DNA methylation altered the expression of nearby and distal genes through affecting chromatin accessibility, histone modifications, transcription factor binding, and the formation of chromatin loops, which may contribute to morphological changes during domestication and de-domestication of rice. These insights into population epigenomics underlying rice domestication and de-domestication provide resources and tools for epigenetic breeding and sustainable agriculture.
Assuntos
Domesticação , Oryza , Humanos , Oryza/genética , Variação Genética , Metilação de DNA/genética , Evolução Molecular , Cromatina/genéticaRESUMO
Argonaute (Ago) proteins are programmable nucleases found in all domains of life, playing a crucial role in biological processes like DNA/RNA interference and gene regulation. Mesophilic prokaryotic Agos (pAgos) have gained increasing research interest due to their broad range of potential applications, yet their molecular mechanisms remain poorly understood. Here, we present seven cryo-electron microscopy structures of Kurthia massiliensis Ago (KmAgo) in various states. These structures encompass the steps of apo-form, guide binding, target recognition, cleavage, and release, revealing that KmAgo employs a unique DDD catalytic triad, instead of a DEDD tetrad, for DNA target cleavage under 5'P-DNA guide conditions. Notably, the last catalytic residue, D713, is positioned outside the catalytic pocket in the absence of guide. After guide binding, D713 enters the catalytic pocket. In contrast, the corresponding catalytic residue in other Agos has been consistently located in the catalytic pocket. Moreover, we identified several sites exhibiting enhanced catalytic activity through alanine mutagenesis. These sites have the potential to serve as engineering targets for augmenting the catalytic efficiency of KmAgo. This structural analysis of KmAgo advances the understanding of the diversity of molecular mechanisms by Agos, offering insights for developing and optimizing mesophilic pAgos-based programmable DNA and RNA manipulation tools.
RESUMO
Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.
Assuntos
Bases de Dados Genéticas , Eucariotos , Fungos , Genoma , Animais , Códon , Eucariotos/genética , Fungos/genética , Plantas/genéticaRESUMO
Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 µg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 µg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.
Assuntos
Bombyx , Engenharia Genética , Animais Geneticamente Modificados , Animais , Pigmentos Biológicos/biossíntese , Betalaínas/biossíntese , Betalaínas/química , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , CorRESUMO
Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.
Assuntos
Lipase Lipoproteica , Receptores de Lipoproteínas , Anticorpos Monoclonais/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Humanos , AnimaisRESUMO
The CNS of the protovertebrate Ciona intestinalis contains a single cluster of dopaminergic (DA) neurons, the coronet cells, which have been likened to the hypothalamus of vertebrates. Whole-embryo single-cell RNA sequencing (RNA-seq) assays identified Ptf1a as the most strongly expressed cell-specific transcription factor (TF) in DA/coronet cells. Knockdown of Ptf1a activity results in their loss, while misexpression results in the appearance of supernumerary DA/coronet cells. Photoreceptor cells and ependymal cells are the most susceptible to transformation, and both cell types express high levels of Meis Coexpression of both Ptf1a and Meis caused the wholesale transformation of the entire CNS into DA/coronet cells. We therefore suggest that the reiterative use of functional manipulations and single-cell RNA-seq assays is an effective means for the identification of regulatory cocktails underlying the specification of specific cell identities.
Assuntos
Ciona intestinalis/genética , Neurônios Dopaminérgicos/metabolismo , Animais , Diferenciação Celular , Ciona intestinalis/embriologia , Ciona intestinalis/crescimento & desenvolvimento , Ciona intestinalis/metabolismo , Neurônios Dopaminérgicos/citologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Célula Única , Fatores de Transcrição/metabolismoRESUMO
Phage therapy has shown great promise for the treatment of multidrug-resistant bacterial infections. However, the lack of a thorough and organized understanding of phage-body interactions has limited its clinical application. Here, we administered different purified phages (Salmonella phage SE_SZW1, Acinetobacter phage AB_SZ6, and Pseudomonas phage PA_LZ7) intravenously to healthy animals (rats and monkeys) to evaluate the phage-induced host responses and phage pharmacokinetics with different intravenous (IV) doses in healthy animals. The plasma and the organs were sampled after different IV doses to determine the phage biodistribution, phage-induced cytokines, and antibodies. The potential side effects of phages on animals were assessed. A non-compartment model revealed that the plasma phage titer gradually decreased over time following a single dose. Repeated doses resulted in a 2-3 Log10 decline of the plasma phage titer at 5 min compared to the first dose, regardless of the type of phage administered in rats. Host innate immune responses were activated including splenic enlargement following repeated doses. Phage-specific neutralization antibodies in animals receiving phages were detected. Similar results were obtained from monkeys. In conclusion, the mammalian bodies were well-tolerant to the administered phages. The animal responses to the phages and the phage biodistribution profiles could have a significant impact on the efficacy of phage therapy.IMPORTANCEPhage therapy has demonstrated potential in addressing multidrug-resistant bacterial infections. However, an insufficient understanding of phage-host interactions has impeded its broader clinical application. In our study, specific phages were administered intravenously (IV) to both rats and monkeys to elucidate phage-host interactions and evaluate phage pharmacokinetics (PK). Results revealed that with successive IV administrations, there was a decrease in plasma phage concentrations. Concurrently, these administrations elicited both innate and adaptive immune responses in the subjects. Notably, the observed immune responses and PK profiles exhibited variation contingent upon the phage type and the mammalian host. Despite these variations, the tested mammals exhibited a favorable tolerance to the IV-administered phages. This underscores the significance of comprehending these interactions for the optimization of phage therapy outcomes.
Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Animais , Humanos , Ratos , Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Mamíferos , Fagos de Pseudomonas , Distribuição Tecidual , Farmacorresistência Bacteriana MúltiplaRESUMO
Non-coding RNA (ncRNA) plays a critical role in biology. ncRNAs from the same family usually have similar functions, as a result, it is essential to predict ncRNA families before identifying their functions. There are two primary methods for predicting ncRNA families, namely, traditional biological methods and computational methods. In traditional biological methods, a lot of manpower and resources are required to predict ncRNA families. Therefore, this paper proposed a new ncRNA family prediction method called MFPred based on computational methods. MFPred identified ncRNA families by extracting sequence features of ncRNAs, and it possessed three primary modules, including (1) four ncRNA sequences encoding and feature extraction module, which encoded ncRNA sequences and extracted four different features of ncRNA sequences, (2) dynamic Bi_GRU and feature fusion module, which extracted contextual information features of the ncRNA sequence and (3) ResNet_SE module that extracted local information features of the ncRNA sequence. In this study, MFPred was compared with the previously proposed ncRNA family prediction methods using two frequently used public ncRNA datasets, NCY and nRC. The results showed that MFPred outperformed other prediction methods in the two datasets.