Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(38): 23450-23459, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32913055

RESUMO

Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal's hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis Currently, our knowledge on the structural origins for cuttlebone's remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered "wall-septa" microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN⋅m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrations within the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.


Assuntos
Materiais Biomiméticos/química , Osso e Ossos/química , Sepia/química , Animais , Fenômenos Biomecânicos , Cerâmica/química , Desenho de Equipamento , Dureza , Porosidade
2.
J Basic Microbiol ; 59(12): 1195-1207, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617952

RESUMO

Klebsiella pneumoniae can naturally synthesize 3-hydroxypropionic acid (3-HP), 1,3-propanediol (1,3-PD), and 2,3-butanediol (2,3-BD) from glycerol. However, biosynthesis of these industrially important chemicals is constrained by troublesome byproducts. To clarify the influences of byproducts on 3-HP production, in this study, a total of eight byproduct-producing enzyme genes including pmd, poxB, frdB, fumC, dhaT, ilvH, adhP, and pflB were individually deleted from the K. pneumoniae genome. The resultant eight mutants presented different levels of metabolites. In 24-h shake-flask cultivation, the adhP- and pflB-deletion mutants produced 0.41 and 0.44 g/L 3-HP, respectively. Notably, the adhP and pflB double deletion mutant K. pneumoniaeΔadhPΔpflB produced 1.58 g/L 3-HP in 24-h shake-flask cultivation. When K. pneumoniaeΔadhPΔpflB was harnessed as a host strain to overexpress PuuC, a native aldehyde dehydrogenase (ALDH) catalyzing 3-hydroxypropionaldehyde (3-HPA) to 3-HP, the resulting recombinant strain K. pneumoniaeΔadhPΔpflB(pTAC-puuC) (pTAC-puuC is PuuC expression vector) generated 66.91 g/L 3-HP with a cumulative yield of 70.84% on glycerol in 60-h bioreactor cultivation. Additionally, this strain showed 2.3-, 5.1-, and 0.67-fold decrease in the concentrations of 1,3-PD, 2,3-BD, and acetic acid compared with the reference strain K. pneumoniae(pTAC-puuC). These results indicated that the byproducts exerted differential impacts on the production of 3-HP, 1,3-PD, and 2,3-BD. Although combinatorial elimination of byproduct pathways could reprogram glycerol flux, the enzyme 1,3-propanediol oxidoreductase (DhaT) that catalyzes 3-HPA to 1,3-PD and the enzymes ALDHs, especially, PuuC are most pivotal for 3-HP production. This study provides a deep understanding of how byproducts affect the production of 3-HP, 1,3-PD, and 2,3-BD in K. pneumoniae.


Assuntos
Vias Biossintéticas/fisiologia , Glicerol/metabolismo , Klebsiella pneumoniae/metabolismo , Ácido Láctico/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Vias Biossintéticas/genética , Butileno Glicóis/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Klebsiella pneumoniae/genética , Ácido Láctico/metabolismo , Engenharia Metabólica , Propilenoglicóis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Indian J Microbiol ; 56(2): 190-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27570311

RESUMO

Plasmid-dependent overexpression of enzyme(s) aims to divert carbon flux toward a desired compound. One drawback of this strategy is compromise of growth due to massive consumption of host resources. Here we show that replenishment of sigma factor rpoE improves the growth of Klebsiella pneumoniae. The gene rpoE was expressed alone or coexpressed with Ald4 (an aldehyde dehydrogenase from Saccharomyces cerevisiae) in K. pneumoniae. We found that the Ald4 activity was higher in the strain coexpressing Ald4 and rpoE (32.3 U/mg) than that expressing Ald4 alone (29.9 U/mg). Additionally, under shake-flask conditions, the strain coexpressing Ald4 and rpoE produced 0.5 g 3-hydroxypropionic acid (3-HP) and 9.8 g 1,3-propanediol (1,3-PD) per liter in 24 h, which were 1.6- and 0.85-fold enhancement, respectively, compared to those expressing Ald4 alone. Notably, under non-optimized bioreactor conditions, the strain coexpressing Ald4 and rpoE produced 13.5 g 3-HP and 37.8 g 1,3-PD per liter with glycerol conversion ratio of 0.45 mol/mol. These results indicate that replenishment of rpoE enhanced promoter activity and stimulated glycerol consumption.

4.
J Mech Behav Biomed Mater ; 137: 105538, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343519

RESUMO

Biogenic minerals are often reported to be harder and tougher than their geological counterparts. However, quantitative comparison of their mechanical properties, particularly fracture toughness, is still limited. Here we provide a systematic comparison of geological and biogenic calcite (mollusk shell Atrina rigida prisms and Placuna placenta laths) through nanoindentation under both dry and 90% relative humidity conditions. Berkovich nanoindentation is used to reveal the mechanical anisotropy of geological calcite when loaded on different crystallographic planes, i.e., reduced modulus Er{104} ≥ Er{108} > Er{001} and hardness H{001} ≥ H{104} ≥ H{108}, and biogenic calcite has comparable modulus but increased hardness than geological calcite. Based on conical nanoindentation, we elucidate that plastic deformation is activated in geological calcite at the low-load regime (<20 mN), involving r{104} and f{012} dislocation slips as well as e{018} twinning, while cleavage fracture dominates under higher loads by cracking along {104} planes. In comparison, biogenic calcite tends to undergo fracture, while the intercrystalline organic interfaces contribute to damage confinement. In addition, increased humidity does not show a significant influence on the properties of geological calcite and the single-crystal A. rigida prisms, however, the laminate composite of P. placenta laths (layer thickness, ∼250-300 nm) exhibits increased toughness and decreased hardness and modulus. We believe the results of this study can provide a benchmark for future investigations on biominerals and bio-inspired materials.


Assuntos
Carbonato de Cálcio , Moluscos , Animais , Cristalografia , Minerais
5.
Nat Commun ; 13(1): 6083, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241635

RESUMO

Due to their low damage tolerance, engineering ceramic foams are often limited to non-structural usages. In this work, we report that stereom, a bioceramic cellular solid (relative density, 0.2-0.4) commonly found in the mineralized skeletal elements of echinoderms (e.g., sea urchin spines), achieves simultaneous high relative strength which approaches the Suquet bound and remarkable energy absorption capability (ca. 17.7 kJ kg-1) through its unique bicontinuous open-cell foam-like microstructure. The high strength is due to the ultra-low stress concentrations within the stereom during loading, resulted from their defect-free cellular morphologies with near-constant surface mean curvatures and negative Gaussian curvatures. Furthermore, the combination of bending-induced microfracture of branches and subsequent local jamming of fractured fragments facilitated by small throat openings in stereom leads to the progressive formation and growth of damage bands with significant microscopic densification of fragments, and consequently, contributes to stereom's exceptionally high damage tolerance.


Assuntos
Equinodermos , Ouriços-do-Mar , Animais , Cerâmica
6.
Science ; 375(6581): 647-652, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143308

RESUMO

Cellular solids (e.g., foams and honeycombs) are widely found in natural and engineering systems because of their high mechanical efficiency and tailorable properties. While these materials are often based on polycrystalline or amorphous constituents, here we report an unusual dual-scale, single-crystalline microlattice found in the biomineralized skeleton of the knobby starfish, Protoreaster nodosus. This structure has a diamond-triply periodic minimal surface geometry (lattice constant, approximately 30 micrometers), the [111] direction of which is aligned with the c-axis of the constituent calcite at the atomic scale. This dual-scale crystallographically coaligned microlattice, which exhibits lattice-level structural gradients and dislocations, combined with the atomic-level conchoidal fracture behavior of biogenic calcite, substantially enhances the damage tolerance of this hierarchical biological microlattice, thus providing important insights for designing synthetic architected cellular solids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA