Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.235
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(16): 3008-3024.e16, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35870449

RESUMO

Here, we report inducible mosaic animal for perturbation (iMAP), a transgenic platform enabling in situ CRISPR targeting of at least 100 genes in parallel throughout the mouse body. iMAP combines Cre-loxP and CRISPR-Cas9 technologies and utilizes a germline-transmitted transgene carrying a large array of individually floxed, tandemly linked gRNA-coding units. Cre-mediated recombination triggers expression of all the gRNAs in the array but only one of them per cell, converting the mice to mosaic organisms suitable for phenotypic characterization and also for high-throughput derivation of conventional single-gene perturbation lines via breeding. Using gRNA representation as a readout, we mapped a miniature Perturb-Atlas cataloging the perturbations of 90 genes across 39 tissues, which yields rich insights into context-dependent gene functions and provides a glimpse of the potential of iMAP in genome decoding.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma , Camundongos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Transgenes
2.
Plant Cell ; 36(9): 3451-3466, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833610

RESUMO

Reactive oxygen species (ROS) production is a key event in modulating plant responses to hypoxia and post-hypoxia reoxygenation. However, the molecular mechanism by which hypoxia-associated ROS homeostasis is controlled remains largely unknown. Here, we showed that the calcium-dependent protein kinase CPK16 regulates plant hypoxia tolerance by phosphorylating the plasma membrane-anchored NADPH oxidase respiratory burst oxidase homolog D (RBOHD) to regulate ROS production in Arabidopsis (Arabidopsis thaliana). In response to hypoxia or reoxygenation, CPK16 was activated through phosphorylation of its Ser274 residue. The cpk16 knockout mutant displayed enhanced hypoxia tolerance, whereas CPK16-overexpressing (CPK16-OE) lines showed increased sensitivity to hypoxic stress. In agreement with these observations, hypoxia and reoxygenation both induced ROS accumulation in the rosettes of CPK16-OEs more strongly than in the rosettes of the cpk16-1 mutant or the wild type. Moreover, CPK16 interacted with and phosphorylated the N-terminus of RBOHD at 4 serine residues (Ser133, Ser148, Ser163, and Ser347) that were necessary for hypoxia- and reoxygenation-induced ROS accumulation. Furthermore, the hypoxia-tolerant phenotype of cpk16-1 was fully abolished in the cpk16 rbohd double mutant. Thus, we have uncovered a regulatory mechanism by which the CPK16-RBOHD module shapes the ROS production during hypoxia and reoxygenation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidases , Espécies Reativas de Oxigênio , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol ; 195(1): 617-639, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38285060

RESUMO

Revealing the genetic basis for stress-resistant traits in extremophile plants will yield important information for crop improvement. Zygophyllum xanthoxylum, an extant species of the ancient Mediterranean, is a succulent xerophyte that can maintain a favorable water status under desert habitats; however, the genetic basis of this adaptive trait is poorly understood. Furthermore, the phylogenetic position of Zygophyllales, to which Z. xanthoxylum belongs, remains controversial. In this study, we sequenced and assembled the chromosome-level genome of Z. xanthoxylum. Phylogenetic analysis showed that Zygophyllales and Myrtales form a separated taxon as a sister to the clade comprising fabids and malvids, clarifying the phylogenetic position of Zygophyllales at whole-genome scale. Analysis of genomic and transcriptomic data revealed multiple critical mechanisms underlying the efficient osmotic adjustment using Na+ and K+ as "cheap" osmolytes that Z. xanthoxylum has evolved through the expansion and synchronized expression of genes encoding key transporters/channels and their regulators involved in Na+/K+ uptake, transport, and compartmentation. It is worth noting that ZxCNGC1;1 (cyclic nucleotide-gated channels) and ZxCNGC1;2 constituted a previously undiscovered energy-saving pathway for Na+ uptake. Meanwhile, the core genes involved in biosynthesis of cuticular wax also featured an expansion and upregulated expression, contributing to the water retention capacity of Z. xanthoxylum under desert environments. Overall, these findings boost the understanding of evolutionary relationships of eudicots, illustrate the unique water retention mechanism in the succulent xerophyte that is distinct from glycophyte, and thus provide valuable genetic resources for the improvement of stress tolerance in crops and insights into the remediation of sodic lands.


Assuntos
Filogenia , Água , Zygophyllum , Água/metabolismo , Zygophyllum/genética , Zygophyllum/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Genômica/métodos
4.
Plant Cell ; 34(12): 4857-4876, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36053201

RESUMO

In multicellular eukaryotes, autophagy is a conserved process that delivers cellular components to the vacuole or lysosome for recycling during development and stress responses. Induction of autophagy activates AUTOPHAGY-RELATED PROTEIN 1 (ATG1) and ATG13 to form a protein kinase complex that initiates autophagosome formation. However, the detailed molecular mechanism underlying the regulation of this protein complex in plants remains unclear. Here, we determined that in Arabidopsis thaliana, the regulatory proteins 14-3-3λ and 14-3-3κ redundantly modulate autophagy dynamics by facilitating SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA (SINAT)-mediated proteolysis of ATG13a and ATG13b. 14-3-3λ and 14-3-3κ directly interacted with SINATs and ATG13a/b in vitro and in vivo. Compared to wild-type (WT), the 14-3-3λ 14-3-3κ double mutant showed increased tolerance to nutrient starvation, delayed leaf senescence, and enhanced starvation-induced autophagic vesicles. Moreover, 14-3-3s were required for SINAT1-mediated ubiquitination and degradation of ATG13a. Consistent with their roles in ATG degradation, the 14-3-3λ 14-3-3κ double mutant accumulated higher levels of ATG1a/b/c and ATG13a/b than the WT upon nutrient deprivation. Furthermore, the specific association of 14-3-3s with phosphorylated ATG13a was crucial for ATG13a stability and formation of the ATG1-ATG13 complex. Thus, our findings demonstrate that 14-3-3λ and 14-3-3κ function as molecular adaptors to regulate autophagy by modulating the homeostasis of phosphorylated ATG13.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Autofagia/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Plant Cell ; 34(2): 889-909, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850198

RESUMO

Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácidos Fosfatídicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipóxia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fenótipo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nano Lett ; 24(39): 12163-12170, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39291795

RESUMO

With high current density, the intense near-electrode CO2 reduction reaction (CO2RR) will cause the concentration gradients of bicarbonate (HCO3-) and hydroxyl (OH-) ions, which affect the selectivity of high-value C2+ products of the CO2RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H+ and local CO2 concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C2+ Faraday efficiency (FE) of ∼79.61% at 500 mA cm-2 under 1 M KHCO3, far more than the FEC2+ ≈ 38.20% with the low-porosity sample (Cu-LP).

7.
Nano Lett ; 24(43): 13741-13746, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39405088

RESUMO

Copper (Cu) has been considered as the most promising catalyst for the electrochemical conversion of CO2 to multicarbon (C2+) products. However, insufficient coverage of the *CO intermediate on the C2+ formation Cu(100) facet largely hinders the C-C coupling process and thus the C2+ conversion efficiency. Herein, we developed an epitaxial growth strategy to generate highly tensile-strained Cu(100) facets via the epitaxial growth of hexagonal boron nitride (hBN) on Cu(100) facets to promote *CO coverage for efficient CO2 to C2+ conversion. The highest ∼6% tensile strain on the Cu(100) facets was obtained by lattice mismatch between the Cu(100) and hBN(002) facets. Theory calculations indicated that tensile-strained Cu(100) facets deliver a notable d-band center upshift to enhance *CO adsorption. As a result, the obtained highly tensile-strained Cu(100) facets enabled an 8-fold improvement of *CO coverage and thus a 83.4% C2+ Faradaic efficiency at 1.2 A cm-2 in strongly acidic electrolyte (pH = 1).

8.
J Biol Chem ; 299(2): 102862, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596360

RESUMO

The N-terminal half of PHF2 harbors both a plant homeodomain (PHD) and a Jumonji domain. The PHD recognizes both histone H3 trimethylated at lysine 4 and methylated nonhistone proteins including vaccinia-related kinase 1 (VRK1). The Jumonji domain erases the repressive dimethylation mark from histone H3 lysine 9 (H3K9me2) at select promoters. The N-terminal amino acid sequences of H3 (AR2TK4) and VRK1 (PR2VK4) bear an arginine at position 2 and lysine at position 4. Here, we show that the PHF2 N-terminal half binds to H3 and VRK1 peptides containing K4me3, with dissociation constants (KD values) of 160 nM and 42 nM, respectively, which are 4 × and 21 × lower (and higher affinities) than for the isolated PHD domain of PHF2. X-ray crystallography revealed that the K4me3-containing peptide is positioned within the PHD and Jumonji interface, with the positively charged R2 residue engaging acidic residues of the PHD and Jumonji domains and with the K4me3 moiety encircled by aromatic residues from both domains. We suggest that the micromolar binding affinities commonly observed for isolated methyl-lysine reader domains could be improved via additional functional interactions within the same polypeptide or its binding partners.


Assuntos
Histonas , Proteínas de Homeodomínio , Lisina , Histonas/química , Lisina/química , Metilação , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas de Homeodomínio/química
9.
J Biol Chem ; 299(2): 102885, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626981

RESUMO

ZBTB7A belongs to a small family of transcription factors having three members in humans (7A, 7B, and 7C). They share a BTB/POZ protein interaction domain at the amino end and a zinc-finger DNA-binding domain at the carboxyl end. They control the transcription of a wide range of genes, having varied functions in hematopoiesis, oncogenesis, and metabolism (in particular glycolysis). ZBTB7A-binding profiles at gene promoters contain a consensus G(a/c)CCC motif, followed by a CCCC sequence in some instances. Structural and mutational investigations suggest that DNA-specific contacts with the four-finger tandem array of ZBTB7A are formed sequentially, initiated from ZF1-ZF2 binding to G(a/c)CCC before spreading to ZF3-ZF4, which bind the DNA backbone and the 3' CCCC sequence, respectively. Here, we studied some mutations found in t(8;21)-positive acute myeloid leukemia patients that occur within the ZBTB7A DNA-binding domain. We determined that these mutations generally impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in ZF1 and ZF2, and the least from a frameshift mutation in ZF3 that results in partial mislocalization. Information provided here on ZBTB7A-DNA interactions is likely applicable to ZBTB7B/C, which have overlapping functions with ZBTB7A in controlling primary metabolism.


Assuntos
Leucemia Mieloide Aguda , Fatores de Transcrição , Humanos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Domínios Proteicos/genética , Ligação Proteica/genética
10.
J Biol Chem ; 299(8): 105017, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414145

RESUMO

Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.


Assuntos
DNA-Citosina Metilases , Rotíferos , Animais , Metilação de DNA , DNA-Citosina Metilases/química , DNA-Citosina Metilases/isolamento & purificação , Mamíferos/metabolismo , Rotíferos/classificação , Rotíferos/enzimologia
11.
Lab Invest ; 104(11): 102143, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39321925

RESUMO

Osteosarcoma, predominantly affecting children and adolescents, is a highly aggressive bone cancer with a 5-year survival rate of 65% to 70%. The spatial dynamics between tumor-associated macrophage (TAM) and other cellular subtypes, including T cells, osteoblasts, and osteoclasts, are critical for understanding the complexities of the osteosarcoma tumor microenvironment (TME) and can provide insights into potential immunotherapeutic strategies. Our study employs a pioneering approach that combines deep learning-based digital image analysis with multiplex fluorescence immunohistochemistry to accurately implement cell detection, segmentation, and fluorescence intensity measurements for the in-depth study of the TME. We introduce a novel algorithm for TAM/osteoclast differentiation, crucial for the accurate characterization of cellular composition. Our findings reveal distinct heterogeneity in cell composition and spatial orchestration between PD-1 (-/+) and PD-L1 (-/+) patients, highlighting the role of T-cell functionality in this context. Furthermore, our analysis demonstrates the efficacy of nivolumab in suppressing tumor growth and enhancing lymphocyte infiltration without altering the M1/M2-TAM ratio. This study provides critical insights into the spatial orchestration of cellular subtypes within the PD-1/PD-L1 defined osteosarcoma TME. By leveraging advanced multiplex fluorescence immunohistochemistry and artificial intelligence, we underscore the critical role of TAMs and T-cell interactions, proposing new therapeutic avenues focusing on TAM repolarization and targeted immunotherapies, thus underscoring the study's potential impact on improving osteosarcoma treatment.

12.
BMC Plant Biol ; 24(1): 129, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383284

RESUMO

BACKGROUND: Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS: In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRT‒PCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRT‒PCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS: This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.


Assuntos
Resistência à Seca , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Secas , Gossypium/genética
13.
Osteoarthritis Cartilage ; 32(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802465

RESUMO

OBJECTIVE: This study aimed to explore the specific function of M2 macrophages in intervertebral disc degeneration (IDD). METHODS: Intervertebral disc (IVD) samples from normal (n = 4) and IDD (n = 6) patients were collected, and the expression of M2-polarized macrophage marker, CD206, was investigated using immunohistochemical staining. Nucleus pulposus cells (NPCs) in a TNF-α environment were obtained, and a mouse caudal IVD puncture model was established. Mice with Rheb deletions, specifically in the myeloid lineage, were generated and subjected to surgery-induced IDD. IDD-induced damage and cell apoptosis were measured using histological scoring, X-ray imaging, immunohistochemical staining, and TdT-mediated dUTP nick end labeling (TUNEL) assay. Finally, mice and NPCs were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in IDD. RESULTS: Accumulation of CD206 in human and mouse IDD tissues was detected. Rheb deletion in the myeloid lineage (RheBcKO) increased the number of CD206+ M2-like macrophages (mean difference 18.6% [15.7-21.6%], P < 0.001), decreased cell apoptosis (mean difference -15.6% [-8.9 to 22.2%], P = 0.001) and attenuated the IDD process in the mouse IDD model. NPCs treated with Rspo2 displayed increased extracellular matrix catabolism and apoptosis; co-culture with a conditioned medium derived from RheBcKO mice inhibited these changes. Anti-Rspo2 treatment in the mouse caudal IVD puncture model exerted protective effects against IDD. CONCLUSIONS: Promoting CD206+ M2-like macrophages could reduce Rspo2 secretion, thereby alleviating experimental IDD. Rheb deletion may help M2-polarized macrophages accumulate and attenuate experimental IDD partially by inhibiting Rspo2 production. Hence, M2-polarized macrophages and Rspo2 may serve as therapeutic targets for IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Apoptose , Modelos Animais de Doenças , Macrófagos/metabolismo
14.
J Vasc Surg ; 80(1): 177-187.e2, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38458361

RESUMO

OBJECTIVE: To investigate the risk factors for major limb adverse events (MALE) in peripheral arterial disease (PAD) combined with frailty and to develop and validate a risk prediction model of MALE. METHODS: This prospective study was performed in the vascular surgery department of patients in six hospitals in southwest China. Prospective collection of patients with PAD combined with frailty from February 1 to December 20, 2021, with MALE as the primary outcome, and followed for 1 year. The cohort was divided into a development cohort and a validation cohort. In the development cohort, a multivariate risk prediction model was developed to predict MALE using random forests for variable selection and multivariable Cox regression analysis. The model is represented by a visualized nomogram and a web-based calculator. The model performance was tested with the validation cohort and assessed using the C-statistic and calibration plots. RESULTS: A total of 1179 patients were prospectively enrolled from February 1 to December 20, 2021. Among 816 patients with PAD who were included in the analysis, the median follow-up period for this study was 9 ± 4.07 months, the mean age was 74.64 ± 9.43 years, and 249 (30.5%) were women. Within 1 year, 222 patients (27.2%) developed MALE. Target lesion revascularizations were performed in 99 patients (12.1%), and amputations were performed in 131 patients (16.1%). The mortality rate within the whole cohort was 108 patients (13.2%). After controlling for competing risk events (death), the cumulative risk of developing MALE was not statistically different. Prealbumin (hazard ratio [HR], 0.6; 95% confidence interval [CI], 0.41-0.89; P = .010), percutaneous coronary intervention (HR, 2.31; 95% CI, 1.26-4.21; P = .006), Rutherford classification (HR, 1.77; 95% CI, 1.36-2.31; P < .001), white blood cell (HR, 1.85; 95% CI, 1.20-2.87; P = .005), high altitude area (HR, 3.1; 95% CI, 1.43-6.75; P = .004), endovascular treatment (HR, 10.2; 95% CI, 1.44-72.50; P = .020), and length of stay (HR, 1.01; 95% CI, 1.00-1.03; P = .012) were risk factors for MALE. The MALE prediction model had a C-statistic of 0.76 (95% CI, 0.70-0.79). The C-statistic was 0.68 for internal validation and 0.66 for external validation for the MALE prediction model. The MALE prediction model for PAD presented an interactive nomogram and a web-based network calculator. CONCLUSIONS: In this study, the MALE prediction model has a discriminative ability to predict MALE among patients with PAD in frailty. The MALE model can optimize clinical decision-making for patients with PAD in frailty.


Assuntos
Amputação Cirúrgica , Técnicas de Apoio para a Decisão , Fragilidade , Doença Arterial Periférica , Valor Preditivo dos Testes , Humanos , Doença Arterial Periférica/mortalidade , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/complicações , Masculino , Idoso , Feminino , Fatores de Risco , Medição de Risco , Estudos Prospectivos , Fragilidade/complicações , Fragilidade/diagnóstico , Fragilidade/mortalidade , Idoso de 80 Anos ou mais , China/epidemiologia , Reprodutibilidade dos Testes , Fatores de Tempo , Pessoa de Meia-Idade , Idoso Fragilizado , Fatores Sexuais , Salvamento de Membro , Nomogramas , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/mortalidade
15.
Rev Cardiovasc Med ; 25(5): 155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076486

RESUMO

Background: Revascularized patients still experience adverse cardiovascular events. This is particularly true for elderly patients over the age of 65, as they often have more co-morbid vascular conditions. It is important to develop a tool to assist clinicians in comprehensively assessing these patients' prognosis. The objective of this study is to create a comprehensive visual nomogram model combining clinical and physiological assessments to predict outcomes in elderly patients undergoing percutaneous coronary intervention (PCI). Methods: This study is a retrospective investigation of patients who underwent PCI between January 2016 and December 2017. A total of 691 patients with 1461 vessels were randomly divided into a training (n = 483) and a validation set (n = 208). A multivariate Cox regression model was employed using the training set to select variables for constructing a nomogram. The performance of the nomogram was assessed through the receiver operating characteristic curve (ROC) and calibration curves to evaluate its discrimination and predictive accuracy. To further assess the clinical usefulness, Kaplan-Meier curve analysis and landmark analysis were conducted. Results: Independent risk factors, including diabetes mellitus (DM), post-PCI quantitative flow ratio (QFR), previous myocardial infarction (MI), and previous PCI, were contained in the nomogram. The nomogram exhibited a good area under the curve (AUC) ranging from 0.742 to 0.789 in the training set, 0.783 to 0.837 in the validation set, and 0.764 to 0.786 in the entire population. Calibration curves demonstrated a well-fitted curve in all three sets. The Kaplan-Meier curves showed clear separation and the patients with higher scores in the nomogram model exhibited a higher incidence of target vessel revascularization (TVR) (7.99% vs. 1.24% for 2-year, p < 0.001 and 13.54% vs. 2.23% for 5-years, p < 0.001, respectively). Conclusions: This study has developed the visually intuitive nomogram to predict the 2-year and 5-year TVR rates for elderly patients who underwent PCI. This tool provides more accurate and comprehensive healthcare guidance for patients and their physicians.

16.
J Nutr ; 154(6): 1853-1860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614238

RESUMO

BACKGROUND: Obesity paradox has been reported in patients with cardiovascular disease, showing an inverse association between obesity as defined by BMI (in kg/m2) and prognosis. Nutritional status is associated with systemic inflammatory response and affects cardiovascular disease outcomes. OBJECTIVES: This study sought to examine the influence of obesity and malnutrition on the prognosis of patients with acute coronary syndrome (ACS). METHODS: This study included consecutive patients diagnosed with ACS and underwent coronary angiogram between January 2009 and February 2023. At baseline, patients were categorized according to their BMI as follows: underweight (<18), normal weight (18-24.9), overweight (25.0-29.9), and obese (>30.0). We assessed the nutritional status by Prognostic Nutritional Index (PNI). Malnutrition was defined as a PNI value of <38. RESULTS: Of the 21,651 patients with ACS, 582 (2.7%) deaths from any cause were observed over 28.7 months. Compared with the patient's state of normal weight, overweight, and obesity were associated with decreased risk of all-cause mortality. Malnutrition was independently associated with poor survival (hazards ratio: 2.64; 95% CI: 2.24, 3.12; P < 0.001). In malnourished patients, overweight and obesity showed a 39% and 72% reduction in the incidence of all-cause mortality, respectively. However, in nourished patients, no significant reduction in the incidence of all-cause mortality was observed (all P > 0.05). CONCLUSIONS: Obesity paradox appears to occur in patients with ACS. Malnutrition may be a significant independent risk factor for prognosis in patients with ACS. The obesity paradox is influenced by the status of malnutrition.


Assuntos
Síndrome Coronariana Aguda , Desnutrição , Obesidade , Humanos , Síndrome Coronariana Aguda/complicações , Síndrome Coronariana Aguda/mortalidade , Masculino , Feminino , Desnutrição/complicações , Obesidade/complicações , Pessoa de Meia-Idade , Idoso , Índice de Massa Corporal , Estado Nutricional , Prognóstico , Fatores de Risco , Avaliação Nutricional , Paradoxo da Obesidade
17.
Exp Eye Res ; 239: 109773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171476

RESUMO

The retinopathy of prematurity (ROP) can cause serious clinical consequences and, fortunately, it is remediable while the time window for treatment is relatively narrow. Therefore, it is urgent to screen all premature infants and diagnose ROP degree timely, which has become a large workload for pediatric ophthalmologists. We developed a retinal image-free procedure using small amount of blood samples based on the plasma Raman spectrum with the machine learning model to automatically classify ROP cases before medical intervention was performed. Statistical differences in infrared Raman spectra of plasma samples were found among the control, mild (ZIIIS1), moderate (ZIIIS2 & ZIIS1), and advanced (ZIIS2) ROP groups. With the different wave points of Raman spectra as the inputs, the outputs of our support vector machine showed that the area under the curves in the receiver operating characteristic (AUC) were 0.763 for the pair comparisons of the control with the mild groups, 0.821 between moderate and advanced groups (ZIIS2), while more than 90% in comparisons of the other four pairs: control vs. moderate (0.981), control vs. advanced (0.963), mild vs. moderate (0.936), and mild vs. advanced (0.953), respectively. Our study could advance principally the ROP diagnosis in two dimensions: the moderate ROPs have been classified remarkably from the mild ones, which leaves more time for the medical treatments, and the procedure of Raman spectrum with a machine learning model based on blood samples can be conveniently promoted to those hospitals lacking of the pediatric ophthalmologists with experience in reading retinal images.


Assuntos
Retinopatia da Prematuridade , Telemedicina , Recém-Nascido , Lactente , Humanos , Criança , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/terapia , Sensibilidade e Especificidade , Telemedicina/métodos , Algoritmos , Aprendizado de Máquina , Idade Gestacional
18.
Diabetes Obes Metab ; 26(9): 3684-3695, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38874096

RESUMO

AIM: To analyse the association between serum bile acid (BA) profile and heart failure (HF) with preserved ejection fraction (HFpEF) in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS: We enrolled 163 individuals with biopsy-proven MAFLD undergoing transthoracic echocardiography for any indication. HFpEF was defined as left ventricular ejection fraction >50% with at least one echocardiographic feature of HF (left ventricular diastolic dysfunction, abnormal left atrial size) and at least one HF sign or symptom. Serum levels of 38 BAs were analysed using ultra-performance liquid chromatography coupled with tandem mass spectrometry. RESULTS: Among the 163 patients enrolled (mean age 47.0 ± 12.8 years, 39.3% female), 52 (31.9%) and 43 (26.4%) met the HFpEF and pre-HFpEF criteria, and 38 serum BAs were detected. Serum ursodeoxycholic acid (UDCA) and hyocholic acid (HCA) species were lower in patients with HFpEF and achieved statistical significance after correction for multiple comparisons. Furthermore, decreases in glycoursodeoxycholic acid and tauroursodeoxycholic acid were associated with HF status. CONCLUSIONS: In this exploratory study, specific UDCA and HCA species were associated with HFpEF status in adults with biopsy-confirmed MAFLD.


Assuntos
Ácidos e Sais Biliares , Insuficiência Cardíaca , Volume Sistólico , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/complicações , Ácidos e Sais Biliares/sangue , Volume Sistólico/fisiologia , Adulto , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Ecocardiografia , Biomarcadores/sangue
19.
Inorg Chem ; 63(21): 9720-9725, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38757704

RESUMO

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

20.
Environ Sci Technol ; 58(31): 14013-14021, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39041953

RESUMO

Large amounts of wastewater containing low-concentration (<10 ppm) rare-earth ions (REIs) are discharged annually in China's rare-earth mining and processing industry, resulting in severe environmental pollution and economic losses. Hence, achieving efficient selective recovery of low-concentration REIs from REIs-containing wastewater is essential for environmental protection and resource recovery. In this study, a pseudocapacitance system was designed for highly efficient capacitive selective recovery of REIs from wastewater using the titanium dioxide/P/C (TiO2/P/C) composite electrode, which exhibited over 99% recovery efficiency for REIs, such as Eu3+, Dy3+, Tb3+, and Lu3+ in mixed solution. This system maintained high efficiency and more than 90 times the enrichment concentration of REIs even after 100 cycles. Ti4+ of TiO2 was reduced to Ti3+ of Ti3O5 under forward voltage in the system, which trapped the electrons of phosphorus site and caused it to be oxidized to phosphate with a strong affinity for REIs, thus improving the selectivity of REIs. Under reverse voltage, Ti3O5 was oxidized to TiO2, which transferred electrons to phosphate and transformed to the phosphorus site, resulting in the desorption and enrichment of REIs and the regeneration of the electrode. This study provides a promising method for the efficient recovery of REIs from wastewater.


Assuntos
Eletrodos , Metais Terras Raras , Fósforo , Titânio , Águas Residuárias , Águas Residuárias/química , Metais Terras Raras/química , Fósforo/química , Adsorção , Titânio/química , Poluentes Químicos da Água/química , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA