Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 238: 109743, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056550

RESUMO

Pigment epithelium-derived factor (PEDF) is widely recognized as a neuroprotective factor expressed in the retina and has shown therapeutic potential in several retinal diseases. Our study aimed to identify the neuroprotective fragment in PEDF and investigate its protective activity in retinas under ischemia-reperfusion (IR) condition. We synthesized a series of shorter synthetic peptides, 6-mer (Ser93-Gln98) and its d-form variant (6 dS) derived from the 44-mer (Val78-Thr121; a PEDF neurotrophic fragment), to determine their cytoprotective activity in IR injury, which was induced in rat retinas by injection of saline into the anterior chamber to increase the intraocular pressure (IOP) followed by reperfusion. We found the cytoprotective effect of 6-mer on glutamate-treated Neuro-2a cells and tert-butyl hydroperoxide (tBHP)-treated 661W cells were 2.6-fold and 1.5-fold higher than the 44-mer, respectively. The cytoprotective effect was blocked by a chemical inhibitor atglistatin and blocking antibody targeting PEDF receptor (PEDF-R). IR induced several impairments in retina, including cell apoptosis, activation of microglia/macroglia, degeneration of retinal capillaries, reduction in electroretinography (ERG) amplitudes, and retinal atrophy. Such IR injuries were ameliorated by treatment with 6-mer and 6 dS eye drops. Also, the neuroprotective activity of 6-mer and 6 dS in ischemic retinas were dramatically reversed by atglistatin preconditioning. Taken together, our data demonstrate smallest neuroprotective fragment of PEDF has potential to treat retinal degeneration-related diseases.


Assuntos
Proteínas do Olho , Fatores de Crescimento Neural , Traumatismo por Reperfusão , Retina , Retinite , Serpinas , Animais , Ratos , Coelhos , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Proteínas do Olho/administração & dosagem , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Serpinas/administração & dosagem , Serpinas/química , Serpinas/metabolismo , Retina/metabolismo , Retina/patologia , Traumatismo por Reperfusão/metabolismo , Citoproteção , Apoptose , Neurônios/metabolismo , Retinite/tratamento farmacológico , Retinite/metabolismo , Administração Tópica , Peptídeos/administração & dosagem , Peptídeos/metabolismo
2.
BMC Ophthalmol ; 22(1): 88, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193548

RESUMO

BACKGROUND: Pigment epithelial-derived factor (PEDF), a 50 kDa secreted glycoprotein, exhibits distinct effects on a range of cell types. PEDF has been shown to inhibit vascular endothelial growth factor (VEGF)-mediated angiogenesis and widely accepted as a promising agent for treatment eye diseases related to neovascularization. A pool of short peptide fragments derived from PEDF reportedly manifests angioinhibitory activity. This study aims to determine the minimal PEDF fragment which can exert the anti-VEGF effect. METHODS: A series of shorter synthetic peptides, derived from the 34-mer (PEDF amino acid positions Asp44-Asn77), were synthesized. An MTT assay was used to evaluate the ability of the 34-mer-derived peptides to inhibit VEGF-induced proliferation of multiple myeloma RPMI8226 cells. Cell apoptosis was monitored by annexin V-FITC staining. Western blot analysis was used to detect phosphorylated kinases, including c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and the expression of apoptosis-associated proteins, including p53, bax and caspase-3. VEGF-mediated angiogenesis of human umbilical vein endothelial cells (HUVECs), rat aortic ring and mouse cornea were used to detect the angioinhibitory activity of the PEDF-derived peptides. RESULTS: The MTT assay showed that the anti-VEGF effect of a 7-mer (Asp64-Ser70) was 1.5-fold greater than the 34-mer. In addition, massive apoptosis (37%) was induced by 7-mer treatment. The 7-mer induced JNK phosphorylation in RPMI8226 cells. Cell apoptosis and apoptosis-associated proteins induced by the 7-mer were blocked by pharmacological inhibition of JNK, but not p38 MAPK. Moreover, the 7-mer prevented VEGF-mediated angiogenesis of endothelial cells (ECs), including tube formation, aortic EC spreading and corneal neovascularization in mice. CONCLUSIONS: This is the first study to show that the PEDF 7-mer peptide manifests anti-VEGF activity, further establishing its potential as an anti-angiogenic agent.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteínas do Olho/farmacologia , Fatores de Crescimento Neural/farmacologia , Peptídeos/farmacologia , Serpinas/farmacologia , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteínas do Olho/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fatores de Crescimento Neural/metabolismo , Ratos , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445121

RESUMO

Cell signaling mediated by the αv integrin plays a pivotal role in macrophage activation in various inflammatory processes, but its involvement in the pathogenesis of dry eye disease (DED) remains unclear. In a murine model of DED, we found increased αv integrin expression in ocular surface macrophages. The αv integrins inhibitor c(RGDfK) ameliorated the corneal damage caused by DED, suggesting a pathogenic role for αv integrin. Because tear hyperosmolarity induces ocular inflammation in DED, a hyperosmolar culture of murine bone marrow-derived macrophages (BMDMs) is used to reproduce inflammation in vitro. However, the expression of proinflammatory cytokine mRNA was minimal, even though αv integrin was induced. In searching for components that are involved in αv integrin-mediated inflammation but that are missing from the culture model, we showed that the levels of vitronectin (VTN), a binding ligand of αv integrins, were increased in the tear fluid and conjunctival stroma of DED animals. The addition of VTN prominently enhanced hyperosmolarity-induced inflammation in BMDMs. Mechanistically, we showed that VTN/αv integrins mediated NF-κB activation to induce inflammatory gene expression in the BMDMs. Our findings indicate that interaction the of VTN with αv integrins is a crucial step in the inflammatory process in DED and suggests a novel therapeutic target.


Assuntos
Síndromes do Olho Seco/metabolismo , Inflamação/metabolismo , Integrina alfaV/metabolismo , Macrófagos/metabolismo , Vitronectina/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Olho/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Células THP-1 , Lágrimas/metabolismo
4.
Br J Cancer ; 123(12): 1796-1807, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32963349

RESUMO

BACKGROUND: Breast cancer amplified sequence 2 (BCAS2) plays crucial roles in pre-mRNA splicing and androgen receptor transcription. Previous studies suggested that BCAS2 is involved in double-strand breaks (DSB); therefore, we aimed to characterise its mechanism and role in prostate cancer (PCa). METHODS: Western blotting and immunofluorescence microscopy were used to assay the roles of BCAS2 in the DSBs of PCa cells and apoptosis in Drosophila, respectively. The effect of BCAS2 dosage on non-homologous end joining (NHEJ) and homologous recombination (HR) were assayed by precise end-joining assay and flow cytometry, respectively. Glutathione-S-transferase pulldown and co-immunoprecipitation assays were used to determine whether and how BCAS2 interacts with NBS1. The expression of BCAS2 and other proteins in human PCa was determined by immunohistochemistry. RESULTS: BCAS2 helped repair radiation-induced DSBs efficiently in both human PCa cells and Drosophila. BCAS2 enhanced both NHEJ and HR, possibly by interacting with NBS1, which involved the BCAS2 N-terminus as well as both the NBS1 N- and C-termini. The overexpression of BCAS2 was significantly associated with higher Gleason and pathology grades and shorter survival in patients with PCa. CONCLUSION: BCAS2 promotes two DSB repair pathways by interacting with NBS1, and it may affect PCa progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Apoptose/genética , DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Drosophila/genética , Humanos , Masculino , Gradação de Tumores , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
5.
J Mol Cell Cardiol ; 137: 9-24, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629737

RESUMO

BACKGROUND: Cardiomyopathy is a common and lethal complication in patients with limb-girdle muscular dystrophy (LGMD), one of the most prevalent forms of muscular dystrophy. The pathogenesis underlying LGMD-related cardiomyopathy remains unclear. NRIP (gene name DCAF6), a Ca2+-dependent calmodulin binding protein, was reduced in dystrophic muscles from LGMD patients. Mice lacking NRIP exhibit a myopathic phenotype resembling that in LGMD patients, making NRIP deficiency a potential culprit leading to cardiomyopathy. This study aimed to determine if NRIP deficiency leads to cardiomyopathy and to explore the underlying molecular mechanisms. METHODS AND RESULTS: NRIP expression was reduced in both human and mouse failing hearts. Muscle-specific NRIP knockout (MCK-Cre::Dcaf6flox/flox) mouse heart and isolated cardiomyocytes exhibited markedly reduced contractility. Transmission electron microscopy revealed abnormal sarcomere structures and mitochondrial morphology in MCK-Cre::Dcaf6flox/flox hearts. Protein co-immunoprecipitation and confocal imaging revealed that NRIP interacts with α-actinin 2 (ACTN2) at the Z-disc. We found that NRIP facilitated ACTN2-mediated F-actin bundling, and that NRIP deficiency resulted in reduced binding between Z-disc proteins ACTN2 and Cap-Z. In addition, NRIP-deficiency led to increased mitochondrial ROS and impaired mitochondrial respiration/ATP production owing to elevated cellular NADH/NAD+ ratios. Treatment with mitochondria-directed antioxidant mitoTEMPO or NAD+ precursor nicotinic acid restored mitochondrial function and cardiac contractility in MCK-Cre::Dcaf6flox/flox mice. CONCLUSIONS: NRIP is essential to maintain sarcomere structure and mitochondrial/contractile function in cardiomyocytes. Our results revealed a novel role for NRIP deficiency in the pathogenesis of LGMD and heart failure. Targeting NRIP, therefore, could be a powerful new approach to treat myocardial dysfunction in LGMD and heart failure patients.


Assuntos
Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatias/fisiopatologia , Respiração Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Insuficiência Cardíaca/genética , Homeostase/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/ultraestrutura , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Niacina/farmacologia , Proteína 1 de Interação com Receptor Nuclear/química , Fenótipo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Sarcômeros/efeitos dos fármacos , Sarcômeros/ultraestrutura
6.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252620

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by excessive growth of keratinocytes and hyperkeratosis in the epidermis. An abnormality of the non-lesional epidermis at an early stage of psoriasis is involved in triggering inflammatory cell infiltration into the dermis. Integrin α5ß1 acts as a receptor for fibronectin and has been found to be overexpressed in non-lesional psoriatic epidermis. To investigate whether α5ß1 integrin has a potential as a drug target for psoriasis treatment, the α5ß1 integrin-binding peptide, C16, was used to obstruct the HaCat keratinocyte cellular responses induced by fibronectin (Fn) in culture and psoriasis-like skin inflammation induced in mice by imiquimod (IMQ). The C16 exhibited antagonistic activity against α5ß1 integrin in HaCat cells, with evidence of suppression of the Fn-mediated proliferative, cytoskeletal, and inflammatory responses. Topical treatment with C16 greatly reduced the IMQ-induced epidermal hyperplasia, infiltration of neutrophils/macrophages, and expression of pro-inflammatory mediators in mouse skin. The C16SP (C16-derived short peptide; DITYVRLKF) also exhibited antagonistic activity, suppressing α5ß1 integrin activity in culture, and reducing IMQ-induced skin inflammation. Taken together, this study provides the first evidence that α5ß1 integrin may be a potential drug target for psoriasis. The synthetic C16 peptide may serve as an agent for psoriasis therapy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Laminina/química , Fragmentos de Peptídeos/uso terapêutico , Psoríase/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Feminino , Fibronectinas/farmacologia , Humanos , Imiquimode/toxicidade , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Psoríase/etiologia
7.
J Cell Sci ; 128(22): 4196-209, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26430214

RESUMO

Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/fisiologia , Proteínas Nucleares/metabolismo , Regeneração/fisiologia , Animais , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais
8.
Am J Physiol Cell Physiol ; 309(3): C159-68, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26040897

RESUMO

In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration.


Assuntos
Proteínas do Olho/farmacologia , Músculo Esquelético/fisiologia , Fatores de Crescimento Neural/farmacologia , Regeneração/fisiologia , Serpinas/farmacologia , Células-Tronco/fisiologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
9.
RNA ; 19(2): 208-18, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23249746

RESUMO

Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability.


Assuntos
Apoptose/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Neoplasias/metabolismo , Splicing de RNA/genética , Asas de Animais/anormalidades , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Larva/crescimento & desenvolvimento , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Fenótipo , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão , Asas de Animais/crescimento & desenvolvimento
10.
Stem Cells ; 31(9): 1775-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23553951

RESUMO

Limbal epithelial stem cell (LSC) transplantation is a prevalent therapeutic method for patients with LSC deficiency. The maintenance of stem cell characteristics in the process of culture expansion is critical for the success of ocular surface reconstruction. Pigment epithelial-derived factor (PEDF) increased the numbers of holoclone in LSC monolayer culture and preserved the stemness of LSC in suspension culture by evidence of ΔNp63α, Bmi-1, and ABCG2 expression. BrdU pulse-labeling assay also demonstrated that PEDF stimulated LSCs proliferation. In air-lift culture of limbal equivalent, PEDF was capable of increasing the numbers of ΔNp63α-positive cells. The mitogenic effect of PEDF was found to be mediated by the phosphorylations of p38 MAPK and STAT3 in LSCs. Synthetic 44-mer PEDF (residues 78-121) was as effective as the full length PEDF in LSC expansion in suspension culture and limbal equivalent formation, as well as the activation of p38 MAPK and STAT3. In mice subjecting to mechanical removal of cornea epithelium, 44-mer PEDF facilitated corneal wound healing. Microscopically, 44-mer PEDF advanced the early proliferative response in limbus, increased the proliferation of ΔNp63α-positive cells both in limbus and in epithelial healing front, and assisted the repopulation of limbus in the late phase of wound healing. In conclusion, the capability of expanding LSC in cell culture and in animal indicates the potential of PEDF and its fragment (e.g., 44-mer PEDF) in ameliorating limbal stem cell deficiency; and their uses as therapeutics for treating corneal wound.


Assuntos
Epitélio Corneano/patologia , Proteínas do Olho/farmacologia , Limbo da Córnea/citologia , Fatores de Crescimento Neural/farmacologia , Serpinas/farmacologia , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio Corneano/efeitos dos fármacos , Imunofluorescência , Humanos , Camundongos , Mitógenos/farmacologia , Células NIH 3T3 , Peptídeos/farmacologia , Coelhos , Fator de Transcrição STAT3/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Cornea ; 43(3): 378-386, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015979

RESUMO

PURPOSE: The purpose of this study was to extensively evaluate the efficacy of integrin αvß3 antagonists for the treatment of experimental dry eye (EDE). METHODS: Vitronectin, an αvß3 ligand, was used to induce tumor necrosis factor-α gene expression in human THP-1 macrophages. To induce EDE, C57BL/6 mice were housed in a low-humidity controlled environment chamber and injected subcutaneously with scopolamine for 7 days. Subsequently, αvß3 antagonists, including RGDfD, c(RGDfD), c(RGDiD), c(RGDfK), ATN-161, SB273005, and cilengitide, were administered topically to EDE animals under controlled environment chamber conditions. Corneal epithelial damage in EDE was assessed by fluorescein staining. The density of conjunctival goblet cells and secretion of tears was measured by period acid-Schiff staining and phenol red-impregnated cotton threads, respectively. Inflammation markers, including tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-17A, and metalloproteinase (MMP)-9, in the pooled cornea and conjunctiva tissues were examined by real-time polymerase chain reaction. RESULTS: The inhibitory effects of αvß3 antagonists on the vitronectin-induced tumor necrosis factor-α gene expression and integrin-mediated inflammatory signaling were validated in THP-1 macrophages. αvß3 antagonists ameliorated the impairment of the corneal epithelial barrier with varying therapeutic efficacies, compared with vehicle-treated mice. c(RGDfD) and c(RGDiD) significantly protected against goblet cell loss, tear reduction, and proinflammatory gene expression in EDE. CONCLUSIONS: Topical applications of αvß3 antagonists yield therapeutic benefits in EDE by promoting corneal epithelial defect healing and reducing inflammation. Antagonistic targeting αvß3 may be a novel promising strategy to treat patients with dry eye disease.


Assuntos
Síndromes do Olho Seco , Integrina alfaVbeta3 , Humanos , Animais , Camundongos , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vitronectina/metabolismo , Vitronectina/farmacologia , Vitronectina/uso terapêutico , Camundongos Endogâmicos C57BL , Síndromes do Olho Seco/metabolismo , Lágrimas/metabolismo , Túnica Conjuntiva/patologia , Córnea/patologia , Inflamação/metabolismo , Modelos Animais de Doenças
12.
Bone Joint Res ; 13(4): 137-148, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555936

RESUMO

Aims: Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods: Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results: The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion: The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC.

13.
J Biol Chem ; 286(41): 35943-35954, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21846721

RESUMO

Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.


Assuntos
Apoptose , Proteínas do Olho/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas do Olho/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Mutação , Neoplasias/imunologia , Fatores de Crescimento Neural/imunologia , PPAR gama/imunologia , PPAR gama/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Elementos de Resposta/imunologia , Receptor X Retinoide alfa/imunologia , Receptor X Retinoide alfa/metabolismo , Serpinas/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia
14.
J Virol ; 85(13): 6750-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543494

RESUMO

Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Calcineurina/metabolismo , Proteínas de Ligação a Calmodulina/genética , Linhagem Celular , Células HEK293 , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Fosforilação
15.
Transl Vis Sci Technol ; 11(10): 12, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36201200

RESUMO

Purpose: To evaluate the efficacy of a pigment epithelium-derived factor (PEDF)-derived short peptide 29-mer, on the treatment and prevention of experimental dry eye (EDE). Methods: C57BL/6 mice were housed in a low humidity controlled environment chamber for 14 days to induce EDE. The 29-mer was administered topically to their eyes, for treatment or dosing, from the point of housing in the controlled environment chamber. The efficacy of the 29-mer on EDE was evaluated in terms of corneal epithelial integrity, tear secretion, and the density of conjunctival goblet cells. PEDF and inflammatory factors, including tumor necrosis factor-α, IL-1ß, IL-6, monocyte chemotactic protein (MCP)-1, matrix metalloproteinase-9, and macrophage infiltration, were examined by real-time polymerase chain reaction, Western blotting, and immunostaining. The involvement of the PEDF receptor/PNPLA2 on the 29-mer effects was evaluated by a specific inhibitor, atglistatin. Rabbit corneal epithelial cells were exposed to hyperosmotic medium to induce inflammatory responses. Results: The levels of PEDF protein increased in the corneal epithelium of EDE, compared with the nonstressed mice. The 29-mer showed a therapeutic effect on EDE and prevented the development of EDE, accompanied by amelioration of the inflammatory factors. The 29-mer effects of inflammatory relief were dramatically reversed by atglistatin. The 29-mer also suppressed the expression of matrix metalloproteinase-9 and proinflammatory cytokines in rabbit corneal epithelial cells induced by hyperosmolarity. Conclusions: Through this animal study, we provide a proof of concept of the anti-inflammatory domain of PEDF having potential to treat dry eye disease. Translational Relevance: This study shows the 29-mer has novel potential as an ophthalmic drop treatment for dry eye disease.


Assuntos
Síndromes do Olho Seco , Metaloproteinase 9 da Matriz , Animais , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Citocinas/uso terapêutico , Modelos Animais de Doenças , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Proteínas do Olho , Inflamação/tratamento farmacológico , Interleucina-6/uso terapêutico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/uso terapêutico , Fatores de Crescimento Neural , Compostos de Fenilureia , Coelhos , Serpinas , Fator de Necrose Tumoral alfa/uso terapêutico
16.
Stem Cell Res Ther ; 13(1): 160, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410459

RESUMO

BACKGROUND: Breast carcinoma-amplified sequence 2 (BCAS2) regulates ß-catenin gene splicing. The conditional knockout of BCAS2 expression in the forebrain (BCAS2 cKO) of mice confers impaired learning and memory along with decreased ß-catenin expression. Because ß-catenin reportedly regulates adult neurogenesis, we wondered whether BCAS2 could regulate adult neurogenesis via ß-catenin. METHODS: BCAS2-regulating neurogenesis was investigated by characterizing BCAS2 cKO mice. Also, lentivirus-shBCAS2 was intracranially injected into the hippocampus of wild-type mice to knock down BCAS2 expression. We evaluated the rescue effects of BCAS2 cKO by intracranial injection of adeno-associated virus encoding BCAS2 (AAV-DJ8-BCAS2) and AAV-ß-catenin gene therapy. RESULTS: To show that BCAS2-regulating adult neurogenesis via ß-catenin, first, BCAS2 cKO mice showed low SRY-box 2-positive (Sox2+) neural stem cell proliferation and doublecortin-positive (DCX+) immature neurons. Second, stereotaxic intracranial injection of lentivirus-shBCAS2 knocked down BCAS2 in the hippocampus of wild-type mice, and we confirmed the BCAS2 regulation of adult neurogenesis via ß-catenin. Third, AAV-DJ8-BCAS2 gene therapy in BCAS2 cKO mice reversed the low proliferation of Sox2+ neural stem cells and the decreased number of DCX+ immature neurons with increased ß-catenin expression. Moreover, AAV-ß-catenin gene therapy restored neuron stem cell proliferation and immature neuron differentiation, which further supports BCAS2-regulating adult neurogenesis via ß-catenin. In addition, cells targeted by AAV-DJ8 injection into the hippocampus included Sox2 and DCX immature neurons, interneurons, and astrocytes. BCAS2 may regulate adult neurogenesis by targeting Sox2+ and DCX+ immature neurons for autocrine effects and interneurons or astrocytes for paracrine effects. CONCLUSIONS: BCAS2 can regulate adult neurogenesis in mice via ß-catenin.


Assuntos
Células-Tronco Neurais , beta Catenina , Animais , Hipocampo , Camundongos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
Am J Pathol ; 177(4): 1798-811, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709803

RESUMO

The liver is the major site of pigment epithelium-derived factor (PEDF) synthesis. Recent evidence suggests a protective role of PEDF in liver cirrhosis. In the present study, immunohistochemical analyses revealed lower PEDF levels in liver tissues of patients with cirrhosis and in animals with chemically induced liver fibrosis. Delivery of the PEDF gene into liver cells produced local PEDF synthesis and ameliorated liver fibrosis in animals treated with either carbon tetrachloride or thioacetamide. In addition, suppression of peroxisome proliferator-activated receptor gamma expression, as well as nuclear translocation of nuclear factor-kappa B was found in hepatic stellate cells (HSCs) from fibrotic livers, and both changes were reversed by PEDF gene delivery. In culture-activated HSCs, PEDF, through the induction of peroxisome proliferator-activated receptor gamma, reduced the activity of nuclear factor-kappa B and prevented the nuclear localization of JunD. In conclusion, our observations that PEDF levels are reduced during liver cirrhosis and that PEDF gene delivery ameliorates cirrhosis suggest that PEDF is an intrinsic protector against liver cirrhosis. Direct inactivation of HSCs and the induction of apoptosis of activated HSCs may be two of the mechanisms by which PEDF suppresses liver cirrhosis.


Assuntos
Proteínas do Olho/metabolismo , Células Estreladas do Fígado/metabolismo , Fator Intrínseco/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Animais , Apoptose , Western Blotting , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Proteínas do Olho/genética , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Fator Intrínseco/genética , Fígado/citologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Fatores de Crescimento Neural/genética , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/genética , Transdução de Sinais , Tioacetamida/toxicidade
18.
J Cachexia Sarcopenia Muscle ; 12(3): 665-676, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773096

RESUMO

BACKGROUND: Nuclear receptor interaction protein (NRIP) co-localizes with acetylcholine receptor (AChR) at the neuromuscular junction (NMJ), and NRIP deficiency causes aberrant NMJ architecture. However, the normal physiological and pathophysiological roles of NRIP in NMJ are still unclear. METHODS: We investigated the co-localization and interaction of NRIP with AChR-associated proteins using immunofluorescence and immunoprecipitation assay, respectively. The binding affinity of AChR-associated proteins was analysed in muscle-restricted NRIP knockout mice and NRIP knockout muscle cells (C2C12). We further collected the sera from 43 patients with myasthenia gravis (MG), an NMJ disorder. The existence and features of anti-NRIP autoantibody in sera were studied using Western blot and epitope mapping. RESULTS: NRIP co-localized with AChR, rapsyn and α-actinin 2 (ACTN2) in gastrocnemius muscles of mice; and α-bungarotoxin (BTX) pull-down assay revealed NRIP with rapsyn and ACTN2 in complexes from muscle tissues and cells. NRIP directly binds with α subunit of AChR (AChRα) in vitro and in vivo to affect the binding affinity of AChR with rapsyn and rapsyn with ACTN2. In 43 patients with MG (age, 58.4 ± 14.5 years; female, 55.8%), we detected six of them (14.0%) having anti-NRIP autoantibody. The presence of anti-NRIP autoantibody correlated with a more severe type of MG when AChR autoantibody existed (P = 0.011). The higher the titre of anti-NRIP autoantibody, the more severe MG severity (P = 0.032). The main immunogenic region is likely on the IQ motif of NRIP. We also showed the IgG subclass of anti-NRIP autoantibody mainly to be IgG1. CONCLUSIONS: NRIP is a novel AChRα binding protein and involves structural NMJ formation, which acts as a scaffold to stabilize AChR-rapsyn-ACTN2 complexes. Anti-NRIP autoantibody is a novel autoantibody in MG and plays a detrimental role in MG with the coexistence of anti-AChR autoantibody.


Assuntos
Acetilcolina , Miastenia Gravis , Animais , Feminino , Humanos , Camundongos , Músculo Esquelético , Junção Neuromuscular , Receptores Colinérgicos
19.
Nucleic Acids Res ; 36(1): 51-66, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17984071

RESUMO

Previously, we found a novel gene, nuclear receptor interaction protein (NRIP), a transcription cofactor that can enhance an AR-driven PSA promoter activity in a ligand-dependent manner in prostate cancer cells. Here, we investigated NRIP regulation. We cloned a 413-bp fragment from the transcription initiation site of the NRIP gene that had strong promoter activity, was TATA-less and GC-rich, and, based on DNA sequences, contained one androgen response element (ARE) and three Sp1-binding sites (Sp1-1, Sp1-2, Sp1-3). Transient promoter luciferase assays, chromatin immunoprecipitation and small RNA interference analyses mapped ARE and Sp1-2-binding sites involved in NRIP promoter activation, implying that NRIP is a target gene for AR or Sp1. AR associates with the NRIP promoter through ARE and indirectly through Sp1-binding site via AR-Sp1 complex formation. Thus both ARE and Sp1-binding site within the NRIP promoter can respond to androgen induction. More intriguingly, NRIP plays a feed-forward role enhancing AR-driven NRIP promoter activity via NRIP forming a complex with AR to protect AR protein from proteasome degradation. This is the first demonstration that NRIP is a novel AR-target gene and that NRIP expression feeds forward and activates its own expression through AR protein stability.


Assuntos
Proteínas Nucleares/genética , Receptores Androgênicos/metabolismo , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Regulação para Cima
20.
Am J Physiol Cell Physiol ; 296(2): C273-84, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19091957

RESUMO

Pigment epithelium-derived factor (PEDF) is an intrinsic antiangiogenic factor and a potential therapeutic agent. Previously, we discovered the mechanism of PEDF-induced apoptosis of human umbilical vein endothelial cells (HUVECs) as sequential induction/activation of p38 mitogen-activated protein kinase (MAPK), peroxisome proliferator-activated receptor gamma (PPAR-gamma), and p53. In the present study, we investigated the signaling role of cytosolic calcium-dependent phospholipase A(2)-alpha (cPLA(2)-alpha) to bridge p38 MAPK and PPAR-gamma activation. PEDF induced cPLA(2)-alpha activation in HUVECs and in endothelial cells in chemical burn-induced vessels on mouse cornea. The cPLA(2)-alpha activation is evident from the phosphorylation and nuclear translocation of cPLA(2)-alpha as well as arachidonic acid release and the cleavage of PED6, a synthetic PLA(2) substrate. Such activation can be abolished by p38 MAPK inhibitor. The PEDF-induced PPAR-gamma activation, p53 expression, caspase-3 activity, and apoptosis can be abolished by both cPLA(2) inhibitor and small interfering RNA targeting cPLA(2)-alpha. Our observation not only establishes the signaling role of cPLA(2)-alpha but also for the first time demonstrates the sequential activation of p38 MAPK, cPLA(2)-alpha, PPAR-gamma, and p53 as the mechanism of PEDF-induced endothelial cell apoptosis.


Assuntos
Apoptose , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Proteínas do Olho/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Apoptose/efeitos dos fármacos , Ácido Araquidônico/metabolismo , Queimaduras Químicas/enzimologia , Queimaduras Químicas/patologia , Caspase 3/metabolismo , Células Cultivadas , Neovascularização da Córnea/enzimologia , Neovascularização da Córnea/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/enzimologia , Queimaduras Oculares/patologia , Proteínas do Olho/administração & dosagem , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/administração & dosagem , PPAR gama/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteínas Recombinantes/metabolismo , Serina , Serpinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA