Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(31): 10862-10870, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34328732

RESUMO

Circulating small extracellular vesicles (sEVs) are naturally occurring nanosized membrane vesicles that convey bioactive molecules between cells. Conventionally, to evaluate their behaviors in vivo, circulating sEVs have to be isolated from the bloodstream, then labeled with imaging materials in vitro, and finally injected back into the circulation of animals for subsequent detection. The tedious isolation-labeling-reinfusion procedures might have an undesirable influence on the natural properties of circulating sEVs, thereby changing their behaviors and the detected kinetics in vivo. Herein, we proposed an in situ biotinylation strategy to directly label circulating sEVs with intravenously injected DSPE-PEG-Biotin, aiming to evaluate the in vivo kinetics of circulating sEVs more biofriendly and accurately. Such an analysis strategy is free of isolation-labeling-reinfusion procedures and has no unfavorable influence on the natural behaviors of sEVs. The results showed that the lifetime of generic circulating sEVs in mice was around 3 days. Furthermore, we, for the first time, revealed the distinct in vivo kinetics of circulating sEV subpopulations with different cell sources, among which erythrocyte-derived sEVs showed the longest lifespan. Moreover, compared with circulating sEVs in situ or used as autograft, circulating sEVs used as allograft had the shortest lifetime. In addition, the in situ biotinylation strategy also provides a way for the enrichment of biotinylated circulating sEVs. In summary, this study provides a novel strategy for in situ labeling of circulating sEVs, which would facilitate the accurate characterization of their kinetics in vivo, thereby accelerating their future application as biomarkers and theranositic vectors.


Assuntos
Vesículas Extracelulares , Animais , Biomarcadores/metabolismo , Biotinilação , Vesículas Extracelulares/metabolismo , Cinética , Camundongos
2.
Cancer Immunol Res ; 11(2): 228-240, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484721

RESUMO

PD-L1 localized to immunosuppressive small extracellular vesicles (sEV PD-L1) contributes to tumor progression and is associated with resistance to immune-checkpoint blockade (ICB) therapy. Here, by establishing a screening strategy with a combination of tissue microarray (TMA), IHC staining, and measurement of circulating sEV PD-L1, we found that the endosomal sorting complex required for transport (ESCRT) member protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was the key regulator of circulating sEV PD-L1 in head and neck squamous cell carcinoma (HNSCC) patients. Increased HRS expression was found in tumor tissues and positively correlated with elevated circulating sEV PD-L1 in patients with HNSCC. The expression of HRS was also negatively correlated to the infiltration of CD8+ T cells. Knockdown of HRS markedly reduced PD-L1 expression in HNSCC cell-derived sEVs, and these sEVs from HRS knockdown cells showed decreased immunosuppressive effects on CD8+ T cells. Knockout of HRS inhibited tumor growth in immunocompetent mice together with PD-1 blockade. Moreover, a higher HRS expression was associated with a lower response rate to anti-PD-1 therapy in patients with HNSCC. In summary, our study reveals HRS, the core component of ESCRT-0, regulates sEV PD-L1 secretion, and is associated with the response to ICB therapy in patients with HNSCC, suggesting HRS is a promising target to improve cancer immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Antígeno B7-H1 , Camundongos Knockout , Resultado do Tratamento , Vesículas Extracelulares/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte
3.
Exp Mol Med ; 54(9): 1379-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117219

RESUMO

Mounting evidence indicates that tumor-derived exosomes (TDEs) play critical roles in tumor development and progression by regulating components in the tumor microenvironment (TME) in an autocrine or paracrine manner. Moreover, due to their delivery of critical molecules that react to chemotherapy and immunotherapy, TDEs also contribute to tumor drug resistance and impede the effective response of antitumor immunotherapy, thereby leading to poor clinical outcomes. There is a pressing need for the inhibition or removal of TDEs to facilitate the treatment and prognosis of cancer patients. Here, in the present review, we systematically overviewed the current strategies for TDE inhibition and clearance, providing novel insights for future tumor interventions in translational medicine. Moreover, existing challenges and potential prospects for TDE-targeted cancer therapy are also discussed to bridge the gaps between progress and promising applications.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/patologia , Imunoterapia , Neoplasias/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA