Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 147(10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32376682

RESUMO

Mitochondria are essential for energy production and although they have their own genome, many nuclear-encoded mitochondrial ribosomal proteins (MRPs) are required for proper function of the organelle. Although mutations in MRPs have been associated with human diseases, little is known about their role during development. Presented here are the null phenotypes for 21 nuclear-encoded mitochondrial proteins and in-depth characterization of mouse embryos mutant for the Mrp genes Mrpl3, Mrpl22, Mrpl44, Mrps18c and Mrps22 Loss of each MRP results in successful implantation and egg-cylinder formation, followed by severe developmental delay and failure to initiate gastrulation by embryonic day 7.5. The robust and similar single knockout phenotypes are somewhat surprising given there are over 70 MRPs and suggest little functional redundancy. Metabolic analysis reveals that Mrp knockout embryos produce significantly less ATP than controls, indicating compromised mitochondrial function. Histological and immunofluorescence analyses indicate abnormal organelle morphology and stalling at the G2/M checkpoint in Mrp null cells. The nearly identical pre-gastrulation phenotype observed for many different nuclear-encoded mitochondrial protein knockouts hints that distinct energy systems are crucial at specific time points during mammalian development.


Assuntos
Desenvolvimento Embrionário/genética , Gastrulação/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , Proteínas Ribossômicas/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
2.
Dev Biol ; 465(1): 1-10, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628936

RESUMO

Protein phosphatases regulate a wide array of proteins through post-translational modification and are required for a plethora of intracellular events in eukaryotes. While some core components of the protein phosphatase complexes are well characterized, many subunits of these large complexes remain unstudied. Here we characterize a loss-of-function allele of the protein phosphatase 1 regulatory subunit 35 (Ppp1r35) gene. Homozygous mouse embryos lacking Ppp1r35 are developmental delayed beginning at embryonic day (E) 7.5 and have obvious morphological defects at later stages. Mutants fail to initiate turning and do not progress beyond the size or staging of normal E8.5 embryos. Consistent with recent in vitro studies linking PPP1R35 with the microcephaly protein Rotatin and with a role in centrosome formation, we show that Ppp1r35 mutant embryos lack primary cilia. Histological and molecular analysis of Ppp1r35 mutants revealed that notochord development is irregular and discontinuous and consistent with a role in primary cilia, that the floor plate of the neural tube is not specified. Similar to other mutant embryos with defects in centriole function, Ppp1r35 mutants displayed increased cell death that is prevalent in the neural tube and an increased number of proliferative cells in prometaphase. We hypothesize that loss of Ppp1r35 function abrogates centriole homeostasis, resulting in a failure to produce functional primary cilia, cell death and cell cycle delay/stalling that leads to developmental failure. Taken together, these results highlight the essential function of Ppp1r35 during early mammalian development and implicate this gene as a candidate for human microcephaly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cílios/metabolismo , Notocorda/enzimologia , Organogênese , Animais , Proteínas de Ciclo Celular/genética , Cílios/genética , Camundongos , Camundongos Knockout
3.
Hum Mol Genet ; 28(16): 2775-2784, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31107948

RESUMO

The dynein axonemal assembly factor (Dnaaf) protein family is involved in preassembly and stability of dynein arms before they are transported into the cilia. In humans, mutations in DNAAF genes lead to several diseases related to cilia defects such as primary ciliary dyskinesia (PCD; OMIM: 612518). Patients with PCD experience malfunctions in cilia motility, which can result in inflammation and infection of the respiratory tract among other defects. Previous studies have identified that a mutation in DNAAF2 results in PCD and that 40% of these patients also experience laterality defects. In an outbred genetic background, Dnaaf2 homozygotes die after birth and have left/right defects among other phenotypes. Here we characterize a novel null allele of Dnaaf2 obtained from the International Mouse Phenotyping Consortium. Our data indicate that on a defined C57bl/6NJ genetic background, homozygous Dnaaf2 mouse embryos fail to progress beyond organogenesis stages with many abnormalities including left-right patterning defects. These findings support studies indicating that hypomorphic mutations of human DNAAF2 can result in ciliary dyskinesia and identify Dnaaf2 as an essential component of cilia function in vivo.


Assuntos
Transtornos da Motilidade Ciliar/etiologia , Genes Letais , Proteínas Associadas aos Microtúbulos/deficiência , Mutação , Alelos , Animais , Padronização Corporal , Transtornos da Motilidade Ciliar/metabolismo , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Expressão Gênica , Genótipo , Camundongos , Fenótipo
4.
Reproduction ; 159(1): 1-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671403

RESUMO

Microspherule protein 1 (MCRS1, also known as MSP58) is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to MCRS1 in vitro, mammalian MCRS1 has not been studied in vivo. Here we report that MCRS1 is essential during early murine development. Mcrs1 mutant embryos exhibit normal morphology at the blastocyst stage but cannot be recovered at gastrulation, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts do not form a typical inner cell mass (ICM) colony, the source of embryonic stem cells (ESCs). Surprisingly, cell death and histone H4 acetylation analysis reveal that apoptosis and global H4 acetylation are normal in mutant blastocysts. However, analysis of lineage specification reveals that while the trophoblast and primitive endoderm are properly specified, the epiblast lineage is compromised and exhibits a severe reduction in cell number. In summary, our study demonstrates the indispensable role of MCRS1 in epiblast development during early mammalian embryogenesis.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Mutação , Proteínas de Ligação a RNA/fisiologia , Animais , Massa Celular Interna do Blastocisto/metabolismo , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Camadas Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Gene Expr Patterns ; 48: 119319, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148985

RESUMO

Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5. To begin to understand the contribution of hnRNPL-regulated pathways in the normal development of the embryo and placenta, we determined hnRNPL expression profile and subcellular localization throughout development. Proteome and Western blot analyses were employed to determine hnRNPL abundance between E3.5 and E17.5. Histological analyses supported that the embryo and implantation site display distinct hnRNPL localization patterns. In the fully developed mouse placenta, nuclear hnRNPL was observed broadly in trophoblasts, whereas within the implantation site a discrete subset of cells showed hnRNPL outside the nucleus. In the first-trimester human placenta, hnRNPL was detected in the undifferentiated cytotrophoblasts, suggesting a role for this factor in trophoblast progenitors. Parallel in vitro studies utilizing Htr8 and Jeg3 cell lines confirmed expression of hnRNPL in cellular models of human trophoblasts. These studies [support] coordinated regulation of hnRNPL during the normal developmental program in the mammalian embryo and placenta.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Placenta , Animais , Feminino , Humanos , Camundongos , Gravidez , Linhagem Celular Tumoral , Embrião de Mamíferos , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
6.
Nat Commun ; 14(1): 5585, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696797

RESUMO

The success of the CD8 T cell-mediated immune response against infections and tumors depends on the formation of a long-lived memory pool, and the protection of effector cells from exhaustion. The advent of checkpoint blockade therapy has significantly improved anti-tumor therapeutic outcomes by reversing CD8 T cell exhaustion, but fails to generate effector cells with memory potential. Here, using in vivo mouse models, we show that let-7 miRNAs determine CD8 T cell fate, where maintenance of let-7 expression during early cell activation results in memory CD8 T cell formation and tumor clearance. Conversely, let-7-deficiency promotes the generation of a terminal effector population that becomes vulnerable to exhaustion and cell death in immunosuppressive environments and fails to reject tumors. Mechanistically, let-7 restrains metabolic changes that occur during T cell activation through the inhibition of the PI3K/AKT/mTOR signaling pathway and production of reactive oxygen species, potent drivers of terminal differentiation and exhaustion. Thus, our results reveal a role for let-7 in the time-sensitive support of memory formation and the protection of effector cells from exhaustion. Overall, our data suggest a strategy in developing next-generation immunotherapies by preserving the multipotency of effector cells rather than enhancing the efficacy of differentiation.


Assuntos
Linfócitos T CD8-Positivos , MicroRNAs , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Anticorpos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Neoplasias , Fosfatidilinositol 3-Quinases/genética , MicroRNAs/genética , MicroRNAs/metabolismo
7.
Gene Expr Patterns ; 38: 119147, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32987154

RESUMO

Mitochondrial ribosomal proteins (MRPs) are essential components for the structural and functional integrity of the mitoribosome complex. Throughout evolution, the mammalian mitoribosome has acquired new Mrp genes to compensate for loss of ribosomal RNA. More than 80 MRPs have been identified in mammals. Here we document expression pattern of 79 Mrp genes during mouse development and adult tissues and find that these genes are consistently expressed throughout early embryogenesis with little stage or tissue specificity. Further investigation of the amino acid sequence reveals that this group of proteins has little to no protein similarity. Recent work has shown that the majority of Mrp genes are essential resulting in early embryonic lethality, suggesting no functional redundancy among the group. Taken together, these results indicate that the Mrp genes are not a gene family descended from a single ancestral gene, and that each MRP has unique and essential role in the mitoribosome complex. The lack of functional redundancy is surprising given the importance of the mitoribosome for cellular and organismal viability. Further, these data suggest that genomic variants in Mrp genes may be causative for early pregnancy loss and should be evaluated as clinically.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Animais , Blastocisto/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo
8.
Clin Epigenetics ; 7: 125, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635906

RESUMO

BACKGROUND: There are currently no screening tests in routine use for oral and pharyngeal cancer beyond visual inspection and palpation, which are provided on an opportunistic basis, indicating a need for development of novel methods for early detection, particularly in high-risk populations. We sought to address this need through comprehensive interrogation of CpG island methylation in oral rinse samples. METHODS: We used the Infinium HumanMethylation450 BeadArray to interrogate DNA methylation in oral rinse samples collected from 154 patients with incident oral or pharyngeal carcinoma prior to treatment and 72 cancer-free control subjects. Subjects were randomly allocated to either a training or a testing set. For each subject, average methylation was calculated for each CpG island represented on the array. We applied a semi-supervised recursively partitioned mixture model to the CpG island methylation data to identify a classifier for prediction of case status in the training set. We then applied the resultant classifier to the testing set for validation and to assess the predictive accuracy. RESULTS: We identified a methylation classifier comprised of 22 CpG islands, which predicted oral and pharyngeal carcinoma with a high degree of accuracy (AUC = 0.92, 95 % CI 0.86, 0.98). CONCLUSIONS: This novel methylation panel is a strong predictor of oral and pharyngeal carcinoma case status in oral rinse samples and may have utility in early detection and post-treatment follow-up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA