Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 45(13): 8079-8090, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28531275

RESUMO

A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes.


Assuntos
RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/metabolismo , Riboswitch/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA de Transferência de Glicina/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 9): 774-83, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21904030

RESUMO

Previous studies of complexes of Mycobacterium tuberculosis PanK (MtPanK) with nucleotide diphosphates and nonhydrolysable analogues of nucleoside triphosphates in the presence or the absence of pantothenate established that the enzyme has dual specificity for ATP and GTP, revealed the unusual movement of ligands during enzyme action and provided information on the effect of pantothenate on the location and conformation of the nucleotides at the beginning and the end of enzyme action. The X-ray analyses of the binary complexes of MtPanK with pantothenate, pantothenol and N-nonylpantothenamide reported here demonstrate that in the absence of nucleotide these ligands occupy, with a somewhat open conformation, a location similar to that occupied by phosphopantothenate in the `end' complexes, which differs distinctly from the location of pantothenate in the closed conformation in the ternary `initiation' complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appears to play a critical role in the movement of ligands that takes place during enzyme action. The work presented here completes the description of the locations and conformations of nucleoside diphosphates and triphosphates and pantothenate in different binary and ternary complexes, and suggests a structural rationale for the movement of ligands during enzyme action. The present investigation also suggests that N-alkylpantothenamides could be phosphorylated by the enzyme in the same manner as pantothenate.


Assuntos
Mycobacterium tuberculosis/enzimologia , Ácido Pantotênico/química , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cristalografia por Raios X , Ácido Pantotênico/análogos & derivados
4.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 4): 312-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19307712

RESUMO

The crystal structures of complexes of Mycobacterium tuberculosis pantothenate kinase with the following ligands have been determined: (i) citrate; (ii) the nonhydrolysable ATP analogue AMPPCP and pantothenate (the initiation complex); (iii) ADP and phosphopantothenate resulting from phosphorylation of pantothenate by ATP in the crystal (the end complex); (iv) ATP and ADP, each with half occupancy, resulting from a quick soak of crystals in ATP (the intermediate complex); (v) CoA; (vi) ADP prepared by soaking and cocrystallization, which turned out to have identical structures, and (vii) ADP and pantothenate. Solution studies on CoA binding and catalytic activity have also been carried out. Unlike in the case of the homologous Escherichia coli enzyme, AMPPCP and ADP occupy different, though overlapping, locations in the respective complexes; the same is true of pantothenate in the initiation complex and phosphopantothenate in the end complex. The binding site of MtPanK is substantially preformed, while that of EcPanK exhibits considerable plasticity. The difference in the behaviour of the E. coli and M. tuberculosis enzymes could be explained in terms of changes in local structure resulting from substitutions. It is unusual for two homologous enzymes to exhibit such striking differences in action. Therefore, the results have to be treated with caution. However, the changes in the locations of ligands exhibited by M. tuberculosis pantothenate kinase are remarkable and novel.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Coenzima A/metabolismo , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Fator VIIa/química , Fator VIIa/metabolismo , Ligantes , Modelos Moleculares , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
5.
Elife ; 72018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30251626

RESUMO

T-box riboswitches are cis-regulatory RNA elements that regulate the expression of proteins involved in amino acid biosynthesis and transport by binding to specific tRNAs and sensing their aminoacylation state. While the T-box modular structural elements that recognize different parts of a tRNA have been identified, the kinetic trajectory describing how these interactions are established temporally remains unclear. Using smFRET, we demonstrate that tRNA binds to the riboswitch in two steps, first anticodon recognition followed by the sensing of the 3' NCCA end, with the second step accompanied by a T-box riboswitch conformational change. Studies on site-specific mutants highlight that specific T-box structural elements drive the two-step binding process in a modular fashion. Our results set up a kinetic framework describing tRNA binding by T-box riboswitches, and suggest such binding mechanism is kinetically beneficial for efficient, co-transcriptional recognition of the cognate tRNA ligand.


Assuntos
Anticódon/genética , Genes Reguladores/genética , RNA de Transferência/genética , Riboswitch/genética , Aminoácidos/genética , Bacillus subtilis/genética , Sítios de Ligação/genética , Cinética , Ligantes , Conformação de Ácido Nucleico
6.
Wiley Interdiscip Rev RNA ; 4(5): 507-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754657

RESUMO

The T-loop is a frequently occurring five-nucleotide motif found in the structure of noncoding RNAs where it is commonly assumed to play an important role in stabilizing the tertiary RNA structure by facilitating long-range interactions between different regions of the molecule. T-loops were first identified in tRNA(Phe) and a formal consensus sequence for this motif was formulated and later revised based on analyses of the crystal structures of prokaryotic ribosomal RNAs and RNase P and the corresponding primary sequence of their orthologues. In the past decade, several new structures of large RNA molecules have been added to the RCSB Protein Data Bank, including the eukaryotic ribosome, a self-splicing group II intron, numerous synthetases in complex with their cognate transfer RNAs (tRNAs), transfer-messenger RNA (tmRNA) in complex with SmpB, several riboswitches, and a complex of bacterial RNase P bound to its tRNA substrate. In this review, the search for T-loops is extended to these new RNA molecules based on the previously established structure-based criteria. The review highlights and discusses the function and additional roles of T-loops in four broad categories of RNA molecules, namely tRNAs, ribosomal RNAs (rRNAs), P RNAs, and RNA genetic elements. Additionally, the potential application for T-loops as interaction modules is also discussed.


Assuntos
Conformação de Ácido Nucleico , Estabilidade de RNA , RNA não Traduzido/química , RNA não Traduzido/metabolismo
7.
J Mol Biol ; 400(2): 171-85, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20451532

RESUMO

Kinetic measurements of enzyme activity indicate that type I pantothenate kinase from Mycobacterium tuberculosis has dual substrate specificity for ATP and GTP, unlike the enzyme from Escherichia coli, which shows a higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes is provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate, (2) GDP and phosphopantothenate, (3) GDP, (4) GDP and pantothenate, (5) AMPPCP, and (6) GMPPCP, reported here, and the structures of the complexes of the two enzymes involving coenzyme A and different adenyl nucleotides reported earlier. The explanation is substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. The structures also provide a rationale for the movement of ligands during the action of the mycobacterial enzyme. Dual specificity of the type exhibited by this enzyme is rare. The change in locations of ligands during action, observed in the case of the M. tuberculosis enzyme, is unusual, so is the striking difference between two homologous enzymes in the geometry of the binding site, locations of ligands, and specificity. Furthermore, the dual specificity of the mycobacterial enzyme appears to have been caused by a biological necessity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ácido Pantotênico/química , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA