Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2514-2523, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247135

RESUMO

Precise mapping and regulation of cell surface receptors hold immense significance in disease treatment, such as cancer, infection, and neurodisorders, but also face enormous challenges. In this study, we designed a series of adjustable multivalent aptamer-based DNA nanostructures to precisely control their interaction with receptors in tumor cells. By profiling surface receptors on 12 cell lines using 10 different aptamers, we generated a heatmap that accurately distinguished between various tumor types based on multiple markers. We then incorporated these aptamers onto DNA origami structures to regulate receptor recognition, with patch-like structures demonstrating a tendency to be trapped on the cell surface and with tube-like structures showing a preference for internalization. Through precise control of aptamer species, valence, and geometric patterns, we found that multiheteroreceptor-mediated recognition not only favored the specific binding of nanostructures to tumor cells but also greatly enhanced intracellular uptake by promoting clathrin-dependent endocytosis. Specifically, we achieved over 5-fold uptake in different tumor cells versus normal cells using tube-like structures modified with different diheteroaptamer pairs, facilitating targeted drug delivery. Moreover, patch-like structures with triheteroaptamers guided specific interactions between macrophages and tumor cells, leading to effective immune clearance. This programmable multivalent system allows for the precise regulation of cell recognition using multiple parameters, demonstrating great potential for personalized tumor treatment.


Assuntos
Aptâmeros de Nucleotídeos , Nanoestruturas , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/química , Neoplasias/tratamento farmacológico , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , DNA/química , Linhagem Celular Tumoral
2.
Am J Hypertens ; 37(9): 682-691, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38782571

RESUMO

BACKGROUND: In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of the testis-specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain high blood pressure during hypertension. METHODS: Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral microinjection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS: TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1ß, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the BP in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1ß and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION: JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high BP in hypertensive rats, making it a potential therapeutic target for hypertension.


Assuntos
Pressão Sanguínea , Hipertensão , Janus Quinase 2 , Núcleo Hipotalâmico Paraventricular , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Norepinefrina/metabolismo , Ratos , Tirfostinas/farmacologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA