Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(5): 855-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376957

RESUMO

Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001). V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1  kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairs V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance for V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.


Assuntos
Mioglobina , Corrida , Camundongos , Animais , Mioglobina/genética , Dióxido de Nitrogênio , Corrida/fisiologia , Oxigênio , Teste de Esforço , Camundongos Knockout , Consumo de Oxigênio/fisiologia
2.
Basic Res Cardiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520533

RESUMO

Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.

3.
NMR Biomed ; 37(5): e5105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225796

RESUMO

This study sought to develop noninvasive, in vivo imaging schemes that allow for quantitative assessment of pulmonary microvascular functional status based on the combination of pulmonary T1 mapping and dynamic contrast-enhanced (DynCE) imaging. Ultrashort-echo-time (UTE) imaging at 9.4 T of lung parenchyma was performed. Retrospective gating was based on modulation of the first point in each recorded spoke. T1 maps were obtained using a series of five consecutive images with varying RF angles and analyzed with the variable flip angle approach. The obtained mean T1 lung value of 1078 ± 38 ms correlated well with previous reports. Improved intersession variability was observed, as evident from a decreased standard deviation of motion-resolved T1 mapping (F-test = 0.051). Animals received lipopolysaccharide (LPS) and were imaged at t = 2, 6, and 12 h after administration. The nitric oxide (NO)-dependent function was assessed according to changes in lung T1 after L-NAME injection, while microvascular perfusion and oxidant stress were assessed with contrast-enhanced imaging after injection of gadolinium or 3-carbamoyl-proxyl nitroxide radical, respectively. Retrospectivel gated UTE allowed robust, motion-compensated imaging that could be used for T1 mapping of lung parenchyma. Changes in lung T1 after L-NAME injection indicated that LPS induced overproduction of NO at t = 2 and 6 h after LPS, but NO-dependent microvascular function was impaired at t = 12 h after LPS. DynCE imaging at t = 6 h after LPS injection revealed decreased microvascular perfusion, with increased vascular permeability and oxidant stress. MRI allows to visualize and quantify lung microvascular NO-dependent function and its concomitant impairment during acute respiratory distress syndrome development with high sensitivity. UTE T1 mapping appears to be sensitive and useful in probing pulmonary microvascular functional status.


Assuntos
Lesão Pulmonar Aguda , Óxido Nítrico , Animais , Camundongos , Estudos Retrospectivos , NG-Nitroarginina Metil Éster , Modelos Animais de Doenças , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Oxidantes , Imageamento Tridimensional/métodos
4.
Toxicol Appl Pharmacol ; : 117030, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981531

RESUMO

Antiviral drugs have significantly improved the treatment of viral infections and reduced the associated mortality and morbidity rates. However, antiviral therapy may lead to an increased risk of cardiovascular diseases, which are related to endothelial toxicity. Here, seven antiviral drugs (remdesivir, PF-00835231, ritonavir, lopinavir, efavirenz, zidovudine and abacavir) were characterized against aortic (HAEC) and pulmonary (hLMVEC) endothelial cells, using high-content microscopy. The colourimetric study (MTS test) revealed similar toxicity profiles of all antiviral drugs tested in the concentration range of 1 nM-50 µM in aortic and pulmonary endothelial cells. Conversely, the drugs' effects on morphological parameters were more pronounced in HAECs as compared with hLMVECs. Based on the antiviral drugs' effects on the cytoplasmic and nuclei architecture (metric, SER texture and STAR morphology parameters), the studied compounds were classified into five distinct morphological subgroups, each linked to a specific cellular response profile. In relation to morphological subgroup classification, antiviral drugs induced a loss of mitochondrial membrane potential, elevated ROS, changed lipid droplets/lysosomal content, decreased von Willebrand factor expression and micronuclei formation or dysregulated cellular autophagy. In conclusion, based on specific changes in endothelial cytoplasm, nuclei and subcellular morphology, the distinct endothelial response was identified for remdesivir, ritonavir, lopinavir, efavirenz, zidovudine and abacavir treatments. The effects detected in aortic endothelial cells were not detected in pulmonary endothelial cells. Taken together, high-content microscopy has proven to be a robust and informative method for endothelial drug profiling that may prove useful in predicting the organ-specific endothelial toxicity of various drugs.

5.
Cell Mol Biol Lett ; 29(1): 67, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724891

RESUMO

BACKGROUND: It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS: Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS: This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal ß-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS: LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.


Assuntos
Células Endoteliais , Metabolismo Energético , Ácidos Graxos , Fígado , Fosforilação Oxidativa , Animais , Fígado/metabolismo , Fígado/citologia , Células Endoteliais/metabolismo , Camundongos , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Carnitina/metabolismo , Carnitina/análogos & derivados , Ácido Palmítico/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Mitocôndrias Hepáticas/metabolismo , Células Cultivadas , Oxirredução
6.
J Lipid Res ; 64(5): 100355, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934842

RESUMO

Biogenesis of lipid droplets (LDs) in various cells plays an important role in various physiological and pathological processes. However, the function of LDs in endothelial physiology and pathology is not well understood. In the present work, we investigated the formation of LDs and prostacyclin (PGI2) generation in the vascular tissue of isolated murine aortas following activation by proinflammatory factors: tumor necrosis factor (TNF), lipopolysaccharides (LPS), angiotensin II (AngII), hypoxic conditions, or oleic acid (OA). The abundance, size, and biochemical composition of LDs were characterized based on Raman spectroscopy and fluorescence imaging. We found that blockade of lipolysis by the adipose triglyceride lipase (ATGL) delayed LDs degradation and simultaneously blunted PGI2 generation in aorta treated with all tested proinflammatory stimuli. Furthermore, the analysis of Raman spectra of LDs in the isolated vessels stimulated by TNF, LPS, AngII, or hypoxia uncovered that these LDs were all rich in highly unsaturated lipids and had a negligible content of phospholipids and cholesterols. Additionally, by comparing the Raman signature of endothelial LDs under hypoxic or OA-overload conditions in the presence or absence of ATGL inhibitor, atglistatin (Atgl), we show that Atgl does not affect the biochemical composition of LDs. Altogether, independent of whether LDs were induced by pro-inflammatory stimuli, hypoxia, or OA and of whether they were composed of highly unsaturated or less unsaturated lipids, we observed LDs formation invariably associated with ATGL-dependent PGI2 generation. In conclusion, vascular LDs formation and ATGL-dependent PGI2 generation represent a universal response to vascular proinflammatory insult.


Assuntos
Epoprostenol , Ácido Oleico , Animais , Camundongos , Ácido Oleico/metabolismo , Epoprostenol/metabolismo , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Lipólise , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Prostaglandinas I/metabolismo
7.
Cell Mol Life Sci ; 79(6): 317, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622139

RESUMO

Endothelial inflammation is recognized as a critical condition in the development of cardiovascular diseases. TNF-induced inflammation of endothelial cells is linked to the formation of lipid droplets, augmented cortical stiffness, and nanostructural endothelial plasma membrane remodelling, but the insight into the mechanism linking these responses is missing. In the present work, we determined the formation of lipid droplets (LDs), nanomechanical, and nanostructural responses in the model of TNF-activated vascular inflammation in the isolated murine aorta using Raman spectroscopy, fluorescence imaging, atomic force microscopy (AFM), and scanning electron microscopy (SEM). We analysed the possible role of Rac1, a major regulator of cytoskeletal organization, in TNF-induced vascular inflammation. We demonstrated that the formation of LDs, polymerization of F-actin, alterations in cortical stiffness, and nanostructural protuberances in endothelial plasma membrane were mediated by the Rac1. In particular, we revealed a significant role for Rac1 in the regulation of the formation of highly unsaturated LDs formed in response to TNF. Inhibition of Rac1 also downregulated the overexpression of ICAM-1 induced by TNF, supporting the role of Rac1 in vascular inflammation. Altogether, our results demonstrate that LDs formation, an integral component of vascular inflammation, is activated by Rac1 that also regulates nanomechanical and nanostructural alterations linked to vascular inflammation.


Assuntos
Células Endoteliais , Endotélio Vascular , Animais , Aorta , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Camundongos
8.
Cell Mol Life Sci ; 79(5): 235, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35397686

RESUMO

The contribution of the shear stress-sensitive epithelial Na+ channel (ENaC) to the mechanical properties of the endothelial cell surface under (patho)physiological conditions is unclear. This issue was addressed in in vivo and in vitro models for endothelial dysfunction. Cultured human umbilical vein endothelial cells (HUVEC) were exposed to laminar (LSS) or non-laminar shear stress (NLSS). ENaC membrane insertion was quantified using Quantum-dot-based immunofluorescence staining and the mechanical properties of the cell surface were probed with the Atomic Force Microscope (AFM) in vitro and ex vivo in isolated aortae of C57BL/6 and ApoE/LDLR-/- mice. Flow- and acetylcholine-mediated vasodilation was measured in vivo using magnetic resonance imaging. Acute LSS led to a rapid mineralocorticoid receptor (MR)-dependent membrane insertion of ENaC and subsequent stiffening of the endothelial cortex caused by actin polymerization. Of note, NLSS stress further augmented the cortical stiffness of the cells. These effects strongly depend on the presence of the endothelial glycocalyx (eGC) and could be prevented by functional inhibition of ENaC and MR in vitro endothelial cells and ex vivo endothelial cells derived from C57BL/6, but not ApoE/LDLR-/- vessel. In vivo In C57BL/6 vessels, ENaC- and MR inhibition blunted flow- and acetylcholine-mediated vasodilation, while in the dysfunctional ApoE/LDLR-/- vessels, this effect was absent. In conclusion, under physiological conditions, endothelial ENaC, together with the glycocalyx, was identified as an important shear stress sensor and mediator of endothelium-dependent vasodilation. In contrast, in pathophysiological conditions, ENaC-mediated mechanotransduction and endothelium-dependent vasodilation were lost, contributing to sustained endothelial stiffening and dysfunction.


Assuntos
Canais Epiteliais de Sódio , Glicocálix , Receptores de Mineralocorticoides , Estresse Mecânico , Acetilcolina/metabolismo , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Canais Epiteliais de Sódio/metabolismo , Glicocálix/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Receptores de Mineralocorticoides/metabolismo
9.
Cancer Cell Int ; 22(1): 218, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725466

RESUMO

BACKGROUND: Protein disulphide isomerases (PDIs) play an important role in cancer progression. However, the relative contribution of the various isoforms of PDI in tumorigenesis is not clear. METHODS: The content of PDI isoforms in 22 cancer cells lines was investigated using LC-MS/MS-based proteomic analysis. The effects of PDIA1, PDIA3 and PDIA17 inhibition on the proliferation, migration and adhesion of MCF-7 and MDA-MB-231 cells, identified as high and low PDIA17 expressing cells, respectively, were assessed using novel aromatic N-sulphonamides of aziridine-2-carboxylic acid derivatives as PDI inhibitors. RESULTS: PDIA1 and PDIA3 were the most abundant in cancer cell lysates and were also detected extracellularly in breast cancer cells (MDA-MB-231 and MCF-7). Some cancer cell lines (e.g., MCF-7, HT-29) showed upregulated expression of PDIA17, whereas in others (e.g., MDA-MB-231, 67NR), PDIA17 was not detected. The simultaneous inhibition of PDIA1 and PDIA3 showed similar anti-proliferative effects in MCF-7 and MDA-MB-231 breast cancer cells. However, the inhibition of PDIA1 and PDIA17 in the MCF-7 cell line resulted in more effective anti-adhesive and anti-proliferative effects. CONCLUSIONS: PDIA1 and PDIA3 represent major isoforms of multiple cancer cells, and their non-selective inhibition displays significant anti-proliferative effects irrespective of whether or not PDIA17 is present. The more pronounced anti-adhesive effects of PDI inhibition in hormone-sensitive MCF-7 cells featured by higher levels of PDIs when compared to triple-negative MDA-MB-231 cells suggests that targeting extracellular PDIA1 and PDIA3 with or without additional PDIA17 inhibition may represent a strategy for personalized anti-adhesive, anti-metastatic therapy in cancers with high PDI expression.

10.
Traffic ; 20(12): 932-942, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31569283

RESUMO

Fenestrae are open transmembrane pores that are a structural hallmark of healthy liver sinusoidal endothelial cells (LSECs). Their key role is the transport of solutes and macromolecular complexes between the sinusoidal lumen and the space of Disse. To date, the biochemical nature of the cytoskeleton elements that surround the fenestrae and sieve plates in LSECs remain largely elusive. Herein, we took advantage of the latest developments in atomic force imaging and super-resolution fluorescence nanoscopy to define the organization of the supramolecular complex(es) that surround the fenestrae. Our data revealed that spectrin, together with actin, lines the inner cell membrane and provided direct structural support to the membrane-bound pores. We conclusively demonstrated that diamide and iodoacetic acid (IAA) affect fenestrae number by destabilizing the LSEC actin-spectrin scaffold. Furthermore, IAA induces rapid and repeatable switching between the open vs closed state of the fenestrae, indicating that the spectrin-actin complex could play an important role in controlling the pore number. Our results suggest that spectrin functions as a key regulator in the structural preservation of the fenestrae, and as such, it might serve as a molecular target for altering transendothelial permeability.


Assuntos
Actinas/metabolismo , Membrana Celular/ultraestrutura , Células Endoteliais/ultraestrutura , Fígado/ultraestrutura , Espectrina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Fígado/irrigação sanguínea , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica , Imagem Individual de Molécula
11.
J Cell Mol Med ; 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142751

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD+ and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5'-nucleotidase knockout mice (CD73-/-). Human non-stenotic valves (n = 10) actively converted NAD+ and NMN via both CD73 and NAD+ -glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD+ was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD+ (0.81 ± 0.07 vs 0.56 ± 0.10) and NMN (1.12 ± 0.10 vs 0.71 ± 0.08 nmol/min/cm2 ) compared with controls. CD38 was also primarily engaged in human vascular NAD+ metabolism. Studies using specific ecto-enzyme inhibitors and CD73-/- mice confirmed that CD73 is not the only enzyme involved in NAD+ and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD+ and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.

12.
J Transl Med ; 19(1): 6, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407555

RESUMO

BACKGROUND: Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS: Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS: We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS: The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.


Assuntos
Aterosclerose , Dislipidemias , Hiperlipoproteinemia Tipo II , Animais , Aterosclerose/complicações , Dislipidemias/complicações , Humanos , Camundongos , Pró-Proteína Convertase 9 , Proteômica , Receptores de LDL
13.
Nitric Oxide ; 113-114: 57-69, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091009

RESUMO

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Nitratos/farmacologia , Nitritos/farmacologia , Administração Oral , Angiotensina II/administração & dosagem , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/sangue , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/administração & dosagem , Nitratos/sangue , Nitritos/administração & dosagem , Nitritos/sangue , Estresse Oxidativo/efeitos dos fármacos
14.
Arterioscler Thromb Vasc Biol ; 40(10): 2376-2390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787519

RESUMO

OBJECTIVES: Carbon monoxide (CO) produced by haem oxygenases or released by CO-releasing molecules (CORM) affords antiplatelet effects, but the mechanism involved has not been defined. Here, we tested the hypothesis that CO-induced inhibition of human platelet aggregation is mediated by modulation of platelet bioenergetics. Approach and Results: To analyze the effects of CORM-A1 on human platelet aggregation and bioenergetics, a light transmission aggregometry, Seahorse XFe technique and liquid chromatography tandem-mass spectrometry-based metabolomics were used. CORM-A1-induced inhibition of platelet aggregation was accompanied by the inhibition of mitochondrial respiration and glycolysis. Interestingly, specific inhibitors of these processes applied individually, in contrast to combined treatment, did not inhibit platelet aggregation considerably. A CORM-A1-induced delay of tricarboxylic acid cycle was associated with oxidized nicotinamide adenine dinucleotide (NAD+) depletion, compatible with the inhibition of oxidative phosphorylation. CORM-A1 provoked an increase in concentrations of proximal (before GAPDH [glyceraldehyde 3-phosphate dehydrogenase]), but not distal glycolysis metabolites, suggesting that CO delayed glycolysis at the level of NAD+-dependent GAPDH; however, GAPDH activity was directly not inhibited. In the presence of exogenous pyruvate, CORM-A1-induced inhibition of platelet aggregation and glycolysis were lost, but were restored by the inhibition of lactate dehydrogenase, involved in cytosolic NAD+ regeneration, pointing out to the key role of NAD+ depletion in the inhibition of platelet bioenergetics by CORM-A1. CONCLUSIONS: The antiplatelet effect of CO is mediated by inhibition of mitochondrial respiration-attributed to the inhibition of cytochrome c oxidase, and inhibition of glycolysis-ascribed to cytosolic NAD+ depletion.


Assuntos
Trifosfato de Adenosina/metabolismo , Plaquetas/efeitos dos fármacos , Boranos/farmacologia , Monóxido de Carbono/farmacologia , Carbonatos/farmacologia , Glicólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NAD/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Plaquetas/metabolismo , Respiração Celular/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 40(1): 145-158, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747801

RESUMO

OBJECTIVE: Cardiovascular outcome trials demonstrated that GLP-1 (glucagon-like peptide-1) analogs including liraglutide reduce the risk of cardiovascular events in type 2 diabetes mellitus. Whether GLP-1 analogs reduce the risk for atherosclerosis independent of glycemic control is challenging to elucidate as the GLP-1R (GLP-1 receptor) is expressed on different cell types, including endothelial and immune cells. Approach and Results: Here, we reveal the cardio- and vasoprotective mechanism of the GLP-1 analog liraglutide at the cellular level in a murine, nondiabetic model of arterial hypertension. Wild-type (C57BL/6J), global (Glp1r-/-), as well as endothelial (Glp1rflox/floxxCdh5cre) and myeloid cell-specific knockout mice (Glp1rflox/floxxLysMcre) of the GLP-1R were studied, and arterial hypertension was induced by angiotensin II. Liraglutide treatment normalized blood pressure, cardiac hypertrophy, vascular fibrosis, endothelial dysfunction, oxidative stress, and vascular inflammation in a GLP-1R-dependent manner. Mechanistically, liraglutide reduced leukocyte rolling on the endothelium and infiltration of myeloid Ly6G-Ly6C+ and Ly6G+Ly6C+ cells into the vascular wall. As a consequence, liraglutide prevented vascular oxidative stress, reduced S-glutathionylation as a marker of eNOS (endothelial NO synthase) uncoupling, and increased NO bioavailability. Importantly, all of these beneficial cardiovascular effects of liraglutide persisted in myeloid cell GLP-1R-deficient (Glp1rflox/floxxLysMcre) mice but were abolished in global (Glp1r-/-) and endothelial cell-specific (Glp1rflox/floxxCdh5cre) GLP-1R knockout mice. CONCLUSIONS: GLP-1R activation attenuates cardiovascular complications of arterial hypertension by reduction of vascular inflammation through selective actions requiring the endothelial but not the myeloid cell GLP-1R.


Assuntos
Aterosclerose/genética , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Hipertensão/genética , Liraglutida/farmacologia , RNA/genética , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Receptor do Peptídeo Semelhante ao Glucagon 1/biossíntese , Hipertensão/complicações , Hipertensão/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
J Cardiovasc Pharmacol ; 78(Suppl 6): S63-S77, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34840264

RESUMO

ABSTRACT: SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.


Assuntos
Senescência Celular , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Sirtuína 1/metabolismo , Doenças Vasculares/enzimologia , Animais , Senescência Celular/efeitos dos fármacos , Suplementos Nutricionais , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Regulação Enzimológica da Expressão Gênica , Estilo de Vida Saudável , Humanos , Terapia de Alvo Molecular , Rejuvenescimento , Comportamento de Redução do Risco , Transdução de Sinais , Sirtuína 1/genética , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia , Doenças Vasculares/prevenção & controle
17.
Analyst ; 146(1): 270-276, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33118570

RESUMO

Perivascular adipose tissue (PVAT) regulates vascular function and represents a novel therapeutic target in vascular diseases. In this work, a new approach based on fiber-optic Raman spectroscopy and spectral modelling was used to characterize the chemical content of the PVAT of the internal mammary artery (IMA) of patients with advanced coronary atherosclerosis (n = 10) undergoing coronary bypass surgery. Our results showed a high degree of lipid unsaturation and low carotenoid content in the PVAT of the IMA of patients with more advanced coronary artery disease. Moreover, the spectral modelling of the IMA's PVAT composition indicated that glyceryl trioleate was a major PVAT lipid and for patients with relatively low levels of ß-carotene, it was accompanied by arachidonic acid and glyceryl trilinolenate. In summary, our proof-of-concept study suggests that carotenoid content and lipid unsaturation degree may reflect the PVAT functional status and a Raman-based assessment of the PVAT of the IMA could prove useful as a novel diagnostic tool to rapidly define the PVAT phenotype in a grafted artery in patients undergoing coronary bypass.


Assuntos
Doença da Artéria Coronariana , Artéria Torácica Interna , Tecido Adiposo , Humanos , Fenótipo , Análise Espectral Raman
18.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808315

RESUMO

Carbon monoxide (CO)-gaseous or released by CO-RMs-both possess antiplatelet properties; however, it remains uncertain whether the mechanisms involved are the same. Here, we characterise the involvement of soluble guanylate cyclase (sGC) in the effects of CO-delivered by gaseous CO-saturated buffer (COG) and generated by CORM-A1-on platelet aggregation and energy metabolism, as well as on vasodilatation in aorta, using light transmission aggregometry, Seahorse XFe technique, and wire myography, respectively. ODQ completely prevented the inhibitory effect of COG on platelet aggregation, but did not modify antiplatelet effect of CORM-A1. In turn, COG did not affect, whereas CORM-A1 substantially inhibited energy metabolism in platelets. Even though activation of sGC by BAY 41-2272 or BAY 58-2667 inhibited significantly platelet aggregation, their effects on energy metabolism in platelets were absent or weak and could not contribute to antiplatelet effects of sGC activation. In contrast, vasodilatation of murine aortic rings, induced either by COG or CORM-A1, was dependent on sGC. We conclude that the source (COG vs. CORM-A1) and kinetics (rapid vs. slow) of CO delivery represent key determinants of the mechanism of antiplatelet action of CO, involving either impairment of energy metabolism or activation of sGG.


Assuntos
Plaquetas/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Adulto , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Plaquetas/metabolismo , Monóxido de Carbono/metabolismo , Gases/metabolismo , Guanilato Ciclase/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/efeitos dos fármacos
19.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673688

RESUMO

Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome-lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1-30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.


Assuntos
Antimaláricos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagia , Cloroquina/farmacologia , Endotélio Vascular/metabolismo , Lipídeos/análise , Fusão de Membrana , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Humanos
20.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830135

RESUMO

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


Assuntos
Dislipidemias/fisiopatologia , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Força Muscular/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Glicemia/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Ácidos Graxos/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução/efeitos dos fármacos , Ranolazina/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Troponina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA