RESUMO
Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD+)-depleting enzyme in the CNS. Altered NAD+ metabolism is linked to both high fat consumption and multiple sclerosis (MS). Here, we identify increased CD38 expression in the male mouse spinal cord following chronic high fat consumption, after focal toxin [lysolecithin (LL)]-mediated demyelinating injury, and in reactive astrocytes within active MS lesions. We demonstrate that CD38 catalytically inactive mice are substantially protected from high fat-induced NAD+ depletion, oligodendrocyte loss, oxidative damage, and astrogliosis. A CD38 inhibitor, 78c, increased NAD+ and attenuated neuroinflammatory changes induced by saturated fat applied to astrocyte cultures. Conditioned media from saturated fat-exposed astrocytes applied to oligodendrocyte cultures impaired myelin protein production, suggesting astrocyte-driven indirect mechanisms of oligodendrogliopathy. In cerebellar organotypic slice cultures subject to LL-demyelination, saturated fat impaired signs of remyelination effects that were mitigated by concomitant 78c treatment. Significantly, oral 78c increased counts of oligodendrocytes and remyelinated axons after focal LL-induced spinal cord demyelination. Using a RiboTag approach, we identified a unique in vivo brain astrocyte translatome profile induced by 78c-mediated CD38 inhibition in mice, including decreased expression of proinflammatory astrocyte markers and increased growth factors. Our findings suggest that a high-fat diet impairs oligodendrocyte survival and differentiation through astrocyte-linked mechanisms mediated by the NAD+ase CD38 and highlights CD38 inhibitors as potential therapeutic candidates to improve myelin regeneration.SIGNIFICANCE STATEMENT Myelin disturbances and oligodendrocyte loss can leave axons vulnerable, leading to permanent neurologic deficits. The results of this study suggest that metabolic disturbances, triggered by consumption of a diet high in fat, promote oligodendrogliopathy and impair myelin regeneration through astrocyte-linked indirect nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms. We demonstrate that restoring NAD+ levels via genetic inactivation of CD38 can overcome these effects. Moreover, we show that therapeutic inactivation of CD38 can enhance myelin regeneration. Together, these findings point to a new metabolic targeting strategy positioned to improve disease course in multiple sclerosis and other conditions in which the integrity of myelin is a key concern.
Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Astrócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , NAD+ Nucleosidase/fisiologia , Regeneração Nervosa/fisiologia , Remielinização/fisiologia , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/genética , Animais , Cerebelo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/genética , Técnicas de Cultura de ÓrgãosRESUMO
Kallikrein related peptidase 6 (Klk6) is a secreted serine protease highly expressed in oligodendrocytes and implicated in demyelinating conditions. To gain insights into the significance of Klk6 to oligodendrocyte biology, we investigated the impact of global Klk6 gene knockout on CNS developmental myelination using the spinal cord of male and female mice as a model. Results demonstrate that constitutive loss of Klk6 expression accelerates oligodendrocyte differentiation developmentally, including increases in the expression of myelin proteins such as MBP, PLP and CNPase, in the number of CC-1+ mature oligodendrocytes, and myelin thickness by the end of the first postnatal week. Co-ordinate elevations in the pro-myelinating signaling pathways ERK and AKT, expression of fatty acid 2-hydroxylase, and myelin regulatory transcription factor were also observed in the spinal cord of 7d Klk6 knockouts. LC/MS/MS quantification of spinal cord lipids showed sphingosine and sphingomyelins to be elevated in Klk6 knockouts at the peak of myelination. Oligodendrocyte progenitor cells (OPCs)-derived from Klk6 knockouts, or wild type OPCs-treated with a Klk6 inhibitor (DFKZ-251), also showed increased MBP and PLP. Moreover, inhibition of Klk6 in OPC cultures enhanced brain derived neurotrophic factor-driven differentiation. Altogether, these findings suggest that oligodendrocyte-derived Klk6 may operate as an autocrine or paracrine rheostat, or brake, on pro-myelinating signaling serving to regulate myelin homeostasis developmentally and in the adult. These findings document for the first time that inhibition of Klk6 globally, or specifically in oligodendrocyte progenitors, is a strategy to increase early stages of oligodendrocyte differentiation and myelin production in the CNS.
Assuntos
Calicreínas/metabolismo , Oligodendroglia , Espectrometria de Massas em Tandem , Animais , Diferenciação Celular/fisiologia , Feminino , Calicreínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismoRESUMO
Myelin loss limits neurological recovery and myelin regeneration and is critical for restoration of function. We recently discovered that global knock-out of the thrombin receptor, also known as Protease Activated Receptor 1 (PAR1), accelerates myelin development. Here we demonstrate that knocking out PAR1 also promotes myelin regeneration. Outcomes in two unique models of myelin injury and repair, that is lysolecithin or cuprizone-mediated demyelination, showed that PAR1 knock-out in male mice improves replenishment of myelinating cells and remyelinated nerve fibers and slows early axon damage. Improvements in myelin regeneration in PAR1 knock-out mice occurred in tandem with a skewing of reactive astrocyte signatures toward a prorepair phenotype. In cell culture, the promyelinating effects of PAR1 loss of function are consistent with possible direct effects on the myelinating potential of oligodendrocyte progenitor cells (OPCs), in addition to OPC-indirect effects involving enhanced astrocyte expression of promyelinating factors, such as BDNF. These findings highlight previously unrecognized roles of PAR1 in myelin regeneration, including integrated actions across the oligodendrocyte and astroglial compartments that are at least partially mechanistically linked to the powerful BDNF-TrkB neurotrophic signaling system. Altogether, findings suggest PAR1 may be a therapeutically tractable target for demyelinating disorders of the CNS.SIGNIFICANCE STATEMENT Replacement of oligodendroglia and myelin regeneration holds tremendous potential to improve function across neurological conditions. Here we demonstrate Protease Activated Receptor 1 (PAR1) is an important regulator of the capacity for myelin regeneration across two experimental murine models of myelin injury. PAR1 is a G-protein-coupled receptor densely expressed in the CNS, however there is limited information regarding its physiological roles in health and disease. Using a combination of PAR1 knock-out mice, oligodendrocyte monocultures and oligodendrocyte-astrocyte cocultures, we demonstrate blocking PAR1 improves myelin production by a mechanism related to effects across glial compartments and linked in part to regulatory actions toward growth factors such as BDNF. These findings set the stage for development of new clinically relevant myelin regeneration strategies.
Assuntos
Doenças Desmielinizantes/fisiopatologia , Regeneração Nervosa/efeitos dos fármacos , Receptor PAR-1/antagonistas & inibidores , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/patologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Quelantes/toxicidade , Técnicas de Cocultura , Cobre , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Perfilação da Expressão Gênica , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/fisiologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Receptor PAR-1/deficiência , Receptor PAR-1/fisiologia , Teste de Desempenho do Rota-Rod , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologiaRESUMO
Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colesterol/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Receptor PAR-1/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crescimento Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologiaRESUMO
Therapeutic benefits of deep brain stimulation (DBS), a neurosurgical treatment for certain movement disorders and other neurologic conditions, are well documented, but DBS mechanisms remain largely unexplained. DBS is thought to modulate pathological neural activity. However, although astrocytes, the most numerous cell type in the brain, play a significant role in neurotransmission, chemical homeostasis and synaptic plasticity, their role in DBS has not been fully examined. To investigate astrocytic function in DBS, we applied DBS-like high frequency electrical stimulation for 24 h to human astrocytes in vitro and analyzed single cell transcriptome mRNA profile. We found that DBS-like high frequency stimulation negatively impacts astrocyte metabolism and promotes the release of extracellular matrix (matricellular) proteins, including IGFBP3, GREM1, IGFBP5, THBS1, and PAPPA. Our results suggest that astrocytes are involved in the long-term modulation of extra cellular matrix environments and that they may influence persistent cell-to-cell interaction and help maintain neuromodulation over time.
Assuntos
Astrócitos/metabolismo , Estimulação Encefálica Profunda/métodos , Proteínas da Matriz Extracelular/metabolismo , Astrócitos/fisiologia , Encéfalo , Estimulação Elétrica/métodos , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Expressão Gênica/genética , Humanos , Plasticidade Neuronal , Cultura Primária de Células , Análise de Sequência de RNA/métodos , Análise de Célula ÚnicaRESUMO
In mammals, initial detection of olfactory stimuli is mediated by sensory neurons in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). The heterotrimeric GTP-binding protein Go is widely expressed in the MOE and VNO of mice. Early studies indicated that Go expression in VNO sensory neurons is critical for directing social and sexual behaviors in female mice [Oboti L, et al. (2014) BMC Biol 12:31]. However, the physiological functions of Go in the MOE have remained poorly defined. Here, we examined the role of Go in the MOE using mice lacking the α subunit of Go Development of the olfactory bulb (OB) was perturbed in mutant mice as a result of reduced neurogenesis and increased cell death. The balance between cell types of OB interneurons was altered in mutant mice, with an increase in the number of tyrosine hydroxylase-positive interneurons at the expense of calbindin-positive interneurons. Sexual behavior toward female mice and preference for female urine odors by olfactory sensory neurons in the MOE were abolished in mutant male mice. Our data suggest that Go signaling is essential for the structural and functional integrity of the MOE and for specification of OB interneurons, which in turn are required for the transmission of pheromone signals and the initiation of mating behavior with the opposite sex.
Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mucosa Olfatória/metabolismo , Comportamento Sexual Animal , Animais , Apoptose/genética , Contagem de Células , Células Cultivadas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Deleção de Genes , Interneurônios/metabolismo , Masculino , Camundongos , Modelos Biológicos , Neurogênese/genética , Bulbo Olfatório/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/metabolismo , Órgão Vomeronasal/metabolismoRESUMO
Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified. Moreover, deficits in TCA cycle intermediates and mitochondrial respiration were observed in the chronic HFD spinal cord tissue. Oligodendrocytes are known to be particularly vulnerable to oxidative damage, and we observed increased markers of oxidative stress in both the brain and spinal cord of HFD-fed mice. We additionally identified that increased apoptotic cell death signaling is underway in oligodendrocytes from mice chronically fed a HFD. When cultured under high saturated fat conditions, oligodendrocytes decreased both mitochondrial function and differentiation. Overall, our findings show that HFD-related changes in metabolic regulators, decreased mitochondrial function, and oxidative stress contribute to a loss of myelinating cells. These studies identify HFD consumption as a key modifiable lifestyle factor for improved myelin integrity in the adult central nervous system and in addition new tractable metabolic targets for myelin protection and repair strategies.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Síndrome Metabólica/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Oligodendroglia/patologia , Estresse Oxidativo/fisiologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , OxirreduçãoRESUMO
Amyotrophic lateral sclerosis (ALS) is a progressive disease which is caused by degeneration of motor neurons in the central nervous system. The incidence of ALS is higher in men than women, but the female advantage disappears with increased age. Here, we report evidence that the female advantage is due to the protective role of estrogen. In an ALS mouse model carrying the human Cu/Zn superoxide dismutase (hSOD1) G93A transgene, ovariectomy did not alter the onset age of the disease while reducing the female lifespan by 7 days and making it comparable to that of the male transgenic mice. Treatment of ovariectomized females with 17beta-estradiol (E2) did not delay the onset of disease, but prevented progression of ALS motor dysfunctions as shown by extension reflex test for a limited time window. Importantly, E2 treatment rescued the lifespans in overiectomized females. These findings will provide important new insights to interpretation of disease progression in post-menopausal female ALS patients.
Assuntos
Esclerose Lateral Amiotrófica , Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Atividade Motora/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Superóxido Dismutase/genética , Idade de Início , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/fisiopatologia , Análise de Variância , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia/métodos , Probabilidade , Tempo de Reação/efeitos dos fármacos , Fatores SexuaisRESUMO
Thrombin is frequently increased in the CNS after injury yet little is known regarding its effects on neural stem cells. Here we show that the subventricular zone (SVZ) of adult mice lacking the high affinity receptor for thrombin, proteinase activated receptor 1 (PAR1), show increased numbers of Sox2+ and Ki-67+ self-renewing neural stem cells (NSCs) and Olig2+ oligodendrocyte progenitors. SVZ NSCs derived from PAR1-knockout mice, or treated with a PAR1 small molecule inhibitor (SCH79797), exhibited enhanced capacity for self-renewal in vitro, including increases in neurosphere formation and BrdU incorporation. PAR1-knockout SVZ monolayer cultures contained more Nestin, NG2+ and Olig2+ cells indicative of enhancements in expansion and differentiation towards the oligodendrocyte lineage. Cultures of NSCs lacking PAR1 also expressed higher levels of myelin basic protein, proteolipid protein and glial fibrillary acidic protein upon differentiation. Complementing these findings, the corpus callosum and anterior commissure of adult PAR1-knockout mice contained greater numbers of Olig2+ progenitors and CC1+ mature oligodendrocytes. Together these findings highlight PAR1 inhibition as a means to expand adult SVZ NSCs and to promote an increased number of mature myelinating oligodendrocytes in vivo that may be of particular benefit in the context of neural injury where PAR1 agonists such as thrombin are deregulated.
Assuntos
Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptores de Trombina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/efeitos dos fármacos , Pirróis/farmacologia , Quinazolinas/farmacologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/genéticaRESUMO
Transmission from photoreceptors to ON bipolar cells in mammalian retina is mediated by a sign-inverting cascade. Upon binding glutamate, the metabotropic glutamate receptor mGluR6 activates the heterotrimeric G-protein Gαoß3γ13, and this leads to closure of the TRPM1 channel (melastatin). TRPM1 is thought to be constitutively open, but the mechanism that leads to its closure is unclear. We investigated this question in mouse rod bipolar cells by dialyzing reagents that modify the activity of either Gαo or Gßγ and then observing their effects on the basal holding current. After opening the TRPM1 channels with light, a constitutively active mutant of Gαo closed the channel, but wild-type Gαo did not. After closing the channels by dark adaptation, phosducin or inactive Gαo (both sequester Gßγ) opened the channel while the active mutant of Gαo did not. Co-immunoprecipitation showed that TRPM1 interacts with Gß3 and with the active and inactive forms of Gαo. Furthermore, bioluminescent energy transfer assays indicated that while Gαo interacts with both the N- and the C- termini of TRPM1, Gßγ interacts only with the N-terminus. Our physiological and biochemical results suggest that both Gαo and Gßγ bind TRPM1 channels and cooperate to close them.
Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ativação do Canal Iônico , Células Bipolares da Retina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Adaptação à Escuridão , Escuridão , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Luz , Camundongos , Modelos Animais , Mutação , Ácido Mirístico/farmacologia , Ligação Proteica , Ratos , Células Bipolares da Retina/efeitos da radiaçãoRESUMO
Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination.
Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Marcha/genética , Atividade Motora/genética , Bainha de Mielina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Medula Espinal/metabolismo , Animais , Encéfalo/citologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Camundongos , Camundongos Knockout , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms.
Assuntos
Hipocampo/fisiopatologia , Transtornos Mentais/fisiopatologia , Neurogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Neurônios/fisiologiaRESUMO
The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIα-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26(+/stop-lacZ)::CaMKIIα-Cre(+/Cre) mice generated by crossing CaMKIIα-Cre(+/Cre) mice with floxed ROSA26 lacZ reporter (Rosa26(+/stop-lacZ)) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26(+/stop-lacZ)::CaMKIIα-Cre(+/Cre) mice. Similarly, when double transgenic Gnao(+/f)::CaMKIIα-Cre(+/Cre) mice carrying a floxed Go-alpha gene (Gnao(f/f)) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (Gnao(Δ)) without inheriting the Cre transgene. The Gnao(Δ/Δ) mice closely resembled conventional Go-alpha knockout mice (Gnao(-/-)) with respect to impairment of their behavior. Thus, we conclude that CaMKIIα-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIα-Cre mice as breeding pairs.