Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(3): 1441-1454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37030677

RESUMO

The objective of few-shot learning is to design a system that can adapt to a given task with only few examples while achieving generalization. Model-agnostic meta-learning (MAML), which has recently gained the popularity for its simplicity and flexibility, learns a good initialization for fast adaptation to a task under few-data regime. However, its performance has been relatively limited especially when novel tasks are different from tasks previously seen during training. In this work, instead of searching for a better initialization, we focus on designing a better fast adaptation process. Consequently, we propose a new task-adaptive weight update rule that greatly enhances the fast adaptation process. Specifically, we introduce a small meta-network that can generate per-step hyperparameters for each given task: learning rate and weight decay coefficients. The experimental results validate that learning a good weight update rule for fast adaptation is the equally important component that has drawn relatively less attention in the recent few-shot learning approaches. Surprisingly, fast adaptation from random initialization with ALFA can already outperform MAML. Furthermore, the proposed weight-update rule is shown to consistently improve the task-adaptation capability of MAML across diverse problem domains: few-shot classification, cross-domain few-shot classification, regression, visual tracking, and video frame interpolation.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(12): 9615-9628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34813468

RESUMO

Video frame interpolation is a challenging problem that involves various scenarios depending on the variety of foreground and background motions, frame rate, and occlusion. Therefore, generalizing across different scenes is difficult for a single network with fixed parameters. Ideally, one could have a different network for each scenario, but this will be computationally infeasible for practical applications. In this work, we propose MetaVFI, an adaptive video frame interpolation algorithm that uses additional information readily available at test time but has not been exploited in previous works. We initially show the benefits of test-time adaptation through simple fine-tuning of a network and then greatly improve its efficiency by incorporating meta-learning. Thus, we obtain significant performance gains with only a single gradient update without introducing any additional parameters. Moreover, the proposed MetaVFI algorithm is model-agnostic which can be easily combined with any video frame interpolation network. We show that our adaptive framework greatly improves the performance of baseline video frame interpolation networks on multiple benchmark datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA