Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 163(6): 1348-59, 2015 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-26627734

RESUMO

Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells.


Assuntos
Orelha Interna/crescimento & desenvolvimento , Células Ciliadas Auditivas/citologia , Trifosfato de Adenosina/metabolismo , Animais , Anoctamina-1 , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Orelha Interna/citologia , Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Labirínticas de Suporte/citologia , Células Labirínticas de Suporte/metabolismo , Camundongos , Camundongos Knockout , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo
2.
J Biol Chem ; 288(28): 20351-60, 2013 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-23729666

RESUMO

Sterol regulatory element-binding proteins (SREBPs) are central regulators of cellular lipid synthesis and homeostasis. Mammalian SREBPs are proteolytically activated and liberated from the membrane by Golgi Site-1 and Site-2 proteases. Fission yeast SREBPs, Sre1 and Sre2, employ a different mechanism that genetically requires the Golgi Dsc E3 ligase complex for cleavage activation. Here, we established Sre2 as a model to define structural requirements for SREBP cleavage. We showed that Sre2 cleavage does not require the N-terminal basic helix-loop-helix zipper transcription factor domain, thus separating cleavage of Sre2 from its transcription factor function. From a mutagenesis screen of 94 C-terminal residues of Sre2, we isolated 15 residues required for cleavage and further identified a glycine-leucine sequence required for Sre2 cleavage. Importantly, the glycine-leucine sequence is located at a conserved distance before the first transmembrane segment of both Sre1 and Sre2 and cleavage occurs in between this sequence and the membrane. Bioinformatic analysis revealed a broad conservation of this novel glycine-leucine motif in SREBP homologs of ascomycete fungi, including the opportunistic human pathogen Aspergillus fumigatus where SREBP is required for virulence. Consistent with this, the sequence was also required for cleavage of the oxygen-responsive transcription factor Sre1 and adaptation to hypoxia, demonstrating functional conservation of this cleavage recognition motif. These cleavage mutants will aid identification of the fungal SREBP protease and facilitate functional dissection of the Dsc E3 ligase required for SREBP activation and fungal pathogenesis.


Assuntos
Mutação , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Anaerobiose , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Glicina/genética , Glicina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leucina/genética , Leucina/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Oxigênio/metabolismo , Oxigênio/farmacologia , Proteólise/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina
3.
Nat Commun ; 15(1): 3335, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637555

RESUMO

Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.


Assuntos
Neoplasias , Oncogenes , Humanos , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , Mutação , Neoplasias/genética
4.
Bioengineering (Basel) ; 10(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627776

RESUMO

Dermatomyositis (DM) is an autoimmune disease that is classified as a type of idiopathic inflammatory myopathy, which affects human skin and muscles. The most common clinical symptoms of DM are muscle weakness, rash, and scaly skin. There is currently no cure for DM. Genetic factors are known to play a pivotal role in DM progression, but few have utilized this information geared toward drug discovery for the disease. Here, we exploited genomic variation associated with DM and integrated this with genomic and bioinformatic analyses to discover new drug candidates. We first integrated genome-wide association study (GWAS) and phenome-wide association study (PheWAS) catalogs to identify disease-associated genomic variants. Biological risk genes for DM were prioritized using strict functional annotations, further identifying candidate drug targets based on druggable genes from databases. Overall, we analyzed 1239 variants associated with DM and obtained 43 drugs that overlapped with 13 target genes (JAK2, FCGR3B, CD4, CD3D, LCK, CD2, CD3E, FCGR3A, CD3G, IFNAR1, CD247, JAK1, IFNAR2). Six drugs clinically investigated for DM, as well as eight drugs under pre-clinical investigation, are candidate drugs that could be repositioned for DM. Further studies are necessary to validate potential biomarkers for novel DM therapeutics from our findings.

5.
Genomics Inform ; 21(2): e26, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37704211

RESUMO

Stevens-Johnson syndrome (SJS) produces a severe hypersensitivity reaction caused by Herpes simplex virus or mycoplasma infection, vaccination, systemic disease, or other agents. Several studies have investigated the genetic susceptibility involved in SJS. To provide further genetic insights into the pathogenesis of SJS, this study prioritized high-impact, SJS-associated pathogenic variants through integrating bioinformatic and population genetic data. First, we identified SJS-associated single nucleotide polymorphisms from the genome-wide association studies catalog, followed by genome annotation with HaploReg and variant validation with Ensembl. Subsequently, expression quantitative trait locus (eQTL) from GTEx identified human genetic variants with differential gene expression across human tissues. Our results indicate that two variants, namely rs2074494 and rs5010528, which are encoded by the HLA-C (human leukocyte antigen C) gene, were found to be differentially expressed in skin. The allele frequencies for rs2074494 and rs5010528 also appear to significantly differ across continents. We highlight the utility of these population-specific HLA-C genetic variants for genetic association studies, and aid in early prognosis and disease treatment of SJS.

6.
Sci Rep ; 13(1): 10032, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340026

RESUMO

Diabetic foot ulcers (DFUs) are a common complication of diabetes and can lead to severe disability and even amputation. Despite advances in treatment, there is currently no cure for DFUs and available drugs for treatment are limited. This study aimed to identify new candidate drugs and repurpose existing drugs to treat DFUs based on transcriptomics analysis. A total of 31 differentially expressed genes (DEGs) were identified and used to prioritize the biological risk genes for DFUs. Further investigation using the database DGIdb revealed 12 druggable target genes among 50 biological DFU risk genes, corresponding to 31 drugs. Interestingly, we highlighted that two drugs (urokinase and lidocaine) are under clinical investigation for DFU and 29 drugs are potential candidates to be repurposed for DFU therapy. The top 5 potential biomarkers for DFU from our findings are IL6ST, CXCL9, IL1R1, CXCR2, and IL10. This study highlights IL1R1 as a highly promising biomarker for DFU due to its high systemic score in functional annotations, that can be targeted with an existing drug, Anakinra. Our study proposed that the integration of transcriptomic and bioinformatic-based approaches has the potential to drive drug repurposing for DFUs. Further research will further examine the mechanisms by which targeting IL1R1 can be used to treat DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Pé Diabético/genética , Reposicionamento de Medicamentos , Transcriptoma
7.
Genomics Inform ; 21(4): e48, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38224715

RESUMO

Liver cancer is the fourth leading cause of death worldwide. Well-known risk factors include hepatitis B virus and hepatitis C virus, along with exposure to aflatoxins, excessive alcohol consumption, obesity, and type 2 diabetes. Genomic variants play a crucial role in mediating the associations between these risk factors and liver cancer. However, the specific variants involved in this process remain under-explored. This study utilized a bioinformatics approach to identify genetic variants associated with liver cancer from various continents. Single-nucleotide polymorphisms associated with liver cancer were retrieved from the genome-wide association studies catalog. Prioritization was then performed using functional annotation with HaploReg v4.1 and the Ensembl database. The prevalence and allele frequencies of each variant were evaluated using Pearson correlation coefficients. Two variants, rs2294915 and rs2896019, encoded by the PNPLA3 gene, were found to be highly expressed in the liver tissue, as well as in the skin, cell-cultured fibroblasts, and adipose-subcutaneous tissue, all of which contribute to the risk of liver cancer. We further found that these two SNPs (rs2294915 and rs2896019) were positively correlated with the prevalence rate. Positive associations with the prevalence rate were more frequent in East Asian and African populations. We highlight the utility of this population-specific PNPLA3 genetic variant for genetic association studies and for the early prognosis and treatment of liver cancer. This study highlights the potential of integrating genomic databases with bioinformatic analysis to identify genetic variations involved in the pathogenesis of liver cancer. The genetic variants investigated in this study are likely to predispose to liver cancer and could affect its progression and aggressiveness. We recommend future research prioritizing the validation of these variations in clinical settings.

8.
Biochem Biophys Rep ; 33: 101419, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36620086

RESUMO

Chickenpox (varicella) is caused by infection with the varicella-zoster virus (VZV), a neurotropic alpha herpes virus with a double-stranded DNA genome. Chickenpox can cause life-threatening complications, including subsequent bacterial infections, central nervous system symptoms, and even death without any risk factors. Few studies have been reported to investigate genetic susceptibility implicated in chickenpox. Herein, our study identified global genetic variants that potentially contributed to chickenpox susceptibility by utilizing the established bioinformatic-based approach. We integrated several databases, such as genome-wide association studies (GWAS) catalog, GTEx portal, HaploReg version 4.1, and Ensembl databases analyses to investigate susceptibility genes associated with chickenpox. Notably, increased expression of HLA-S, HCG4P5, and ABHD16A genes underlie enhanced chickenpox susceptibility in the European, American, and African populations. As compared to the Asian population, Europeans, Americans, and Africans have higher allele frequencies of the extant variants rs9266089, rs10947050, and rs79501286 from the susceptibility genes. Our study suggested that these susceptibility genes and associated genetic variants might play a critical role in chickenpox progression based on host genetics with clinical implications.

9.
Biochem Biophys Rep ; 32: 101337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36105612

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system (CNS) marked by inflammation, demyelination, and axonal loss. Currently available MS medication is limited, thereby calling for a strategy to accelerate new drug discovery. One of the strategies to discover new drugs is to utilize old drugs for new indications, an approach known as drug repurposing. Herein, we first identified 421 MS-associated SNPs from the Genome-Wide Association Study (GWAS) catalog (p-value < 5 × 10-8), and a total of 427 risk genes associated with MS using HaploReg version 4.1 under the criterion r2 > 0.8. MS risk genes were then prioritized using bioinformatics analysis to identify biological MS risk genes. The prioritization was performed based on six defined categories of functional annotations, namely missense mutation, cis-expression quantitative trait locus (cis-eQTL), molecular pathway analysis, protein-protein interaction (PPI), genes overlap with knockout mouse phenotype, and primary immunodeficiency (PID). A total of 144 biological MS risk genes were found and mapped into 194 genes within an expanded PPI network. According to the DrugBank and the Therapeutic Target Database, 27 genes within the list targeted by 68 new candidate drugs were identified. Importantly, the power of our approach is confirmed with the identification of a known approved drug (dimethyl fumarate) for MS. Based on additional data from ClinicalTrials.gov, eight drugs targeting eight distinct genes are prioritized with clinical evidence for MS disease treatment. Notably, CD80 and CD86 pathways are promising targets for MS drug repurposing. Using in silico drug repurposing, we identified belatacept as a promising MS drug candidate. Overall, this study emphasized the integration of functional genomic variants and bioinformatic-based approach that reveal important biological insights for MS and drive drug repurposing efforts for the treatment of this devastating disease.

10.
Biochem Biophys Rep ; 31: 101307, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35832745

RESUMO

Background: One of the main challenges in personalized medicine is to establish and apply a large number of variants from genomic databases into clinical diagnostics and further facilitate genome-driven drug repurposing. By utilizing biological chronic hepatitis B infection (CHB) risk genes, our study proposed a systematic approach to use genomic variants to drive drug repurposing for CHB. Method: The genomic variants were retrieved from the Genome-Wide Association Study (GWAS) and Phenome-Wide Association Study (PheWAS) databases. Then, the biological CHB risk genes crucial for CHB progression were prioritized based on the scoring system devised with five strict functional annotation criteria. A score of ≥ 2 were categorized as the biological CHB risk genes and further shed light on drug target genes for CHB treatments. Overlapping druggable targets were identified using two drug databases (DrugBank and Drug-Gene Interaction Database (DGIdb)). Results: A total of 44 biological CHB risk genes were screened based on the scoring system from five functional annotation criteria. Interestingly, we found 6 druggable targets that overlapped with 18 drugs with status of undergoing clinical trials for CHB, and 9 druggable targets that overlapped with 20 drugs undergoing preclinical investigations for CHB. Eight druggable targets were identified, overlapping with 25 drugs that can potentially be repurposed for CHB. Notably, CD40 and HLA-DPB1 were identified as promising targets for CHB drug repurposing based on the target scores. Conclusion: Through the integration of genomic variants and a bioinformatic approach, our findings suggested the plausibility of CHB genomic variant-driven drug repurposing for CHB.

11.
Neuron ; 54(3): 429-45, 2007 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-17481396

RESUMO

The cytoskeletal regulators that mediate the change in the neuronal cytoskeletal machinery from one that promotes oriented motility to one that facilitates differentiation at the appropriate locations in the developing neocortex remain unknown. We found that Nck-associated protein 1 (Nap1), an adaptor protein thought to modulate actin nucleation, is selectively expressed in the developing cortical plate, where neurons terminate their migration and initiate laminar-specific differentiation. Loss of Nap1 function disrupts neuronal differentiation. Premature expression of Nap1 in migrating neurons retards migration and promotes postmigratory differentiation. Nap1 gene mutation in mice leads to neural tube and neuronal differentiation defects. Disruption of Nap1 retards the ability to localize key actin cytoskeletal regulators such as WAVE1 to the protrusive edges where they are needed to elaborate process outgrowth. Thus, Nap1 plays an essential role in facilitating neuronal cytoskeletal changes underlying the postmigratory differentiation of cortical neurons, a critical step in functional wiring of the cortex.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Neurônios/fisiologia , Proteínas Oncogênicas/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Movimento Celular , Córtex Cerebral/enzimologia , Embrião de Mamíferos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imunoprecipitação , Hibridização In Situ , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Varredura/métodos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Fatores de Tempo
12.
Elife ; 92020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179598

RESUMO

Sequence variation in regulatory DNA alters gene expression and shapes genetically complex traits. However, the identification of individual, causal regulatory variants is challenging. Here, we used a massively parallel reporter assay to measure the cis-regulatory consequences of 5832 natural DNA variants in the promoters of 2503 genes in the yeast Saccharomyces cerevisiae. We identified 451 causal variants, which underlie genetic loci known to affect gene expression. Several promoters harbored multiple causal variants. In five promoters, pairs of variants showed non-additive, epistatic interactions. Causal variants were enriched at conserved nucleotides, tended to have low derived allele frequency, and were depleted from promoters of essential genes, which is consistent with the action of negative selection. Causal variants were also enriched for alterations in transcription factor binding sites. Models integrating these features provided modest, but statistically significant, ability to predict causal variants. This work revealed a complex molecular basis for cis-acting regulatory variation.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cruzamentos Genéticos , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , Biblioteca Gênica , Variação Genética , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas , Proteínas de Saccharomyces cerevisiae/genética
13.
Cell Syst ; 8(3): 254-260.e6, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30904378

RESUMO

G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale.


Assuntos
Odorantes , Receptores Odorantes/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais , Olfato , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Ligantes , Mamíferos/metabolismo , Mamíferos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA