Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221749

RESUMO

Although various oxidase mimetic or peroxidase (POD) mimetic nanozymes have been extensively studied, their poor substrate selectivity significantly inhibits their practical applications. Nanozymes with specific biomolecules as substrates, especially ascorbic acid oxidase (AAO) mimetic nanozymes with ascorbic acid (AA) as a substrate, have scarcely been studied. Herein, inspired by the multi-Cu atom sites and the redox electron transfer pathway of Cu2+/Cu+ in the natural AAO, atomically dispersed Cu sites immobilized on N-doped porous carbon (Cu-N/C) are artificially designed to simulate the function of natural AAO. Compared with their natural counterparts, the Cu-N/C catalysts exhibited higher catalytic efficiency and superior stability. Combined theoretical calculation and experimental characterizations reveal that the Cu-N/C nanozymes could catalyze the AA oxidation through a 2e- oxygen reduction pathway with H2O2 as the product. Moreover, the Cu-N/C nanozymes also possess high POD activity. As a proof-of-concept application, Cu-N/C can simultaneously realize AA detection in fluorescent mode based on its AAO activity and total antioxidant capacity detection in colorimetric mode utilizing its POD activity.

2.
Anal Bioanal Chem ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108842

RESUMO

Although traditional Fe-based nanozymes have shown great potential, generally only a small proportion of the Fe atoms on the catalyst's surface are used. Herein, we synthesized single-atom Fe on N-doped graphene nanosheets (Fe-CNG) with high atom utilization efficiency and a unique coordination structure. Active oxygen species including superoxide radicals (O2•-) and singlet oxygen (1O2) were efficiently generated from the interaction of the Fe-CNG with dissolved oxygen in acidic conditions. The Fe-CNG nanozymes were found to display enhanced oxidase-like and laccase-like activity, with Vmax of 2.07 × 10-7 M∙S-1 and 4.54 × 10-8 M∙S-1 and Km of 0.324 mM and 0.082 mM, respectively, which is mainly due to Fe active centers coordinating with O and N atoms simultaneously. The oxidase-like performance of the Fe-CNG can be effectively inhibited by ascorbic acid (AA) or hydroquinone (HQ), which can directly obstruct the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, a direct and sensitive colorimetric method for the detection of AA and HQ activity was established, which exhibited good linear detection and limit of detection (LOD) of 0.048 µM and 0.025 µM, respectively. Moreover, a colorimetric method based on the Fe-CNG catalyst was fabricated for detecting the concentration of AA in vitamin C. Therefore, this work offers a new method for preparing a single-atom catalyst (SAC) nanozyme and a promising strategy for detecting AA and HQ.

3.
Anal Bioanal Chem ; 415(4): 649-658, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36443450

RESUMO

High levels of uric acid (UA) in humans can cause a range of diseases, and traditional assays that rely on uric acid enzymes to break down uric acid are limited by the inherent deficiencies of natural enzymes. Fortunately, the rapid development of nanozymes in recent years is expected to solve the above-mentioned problems. Hence, we used a host-guest strategy to synthesize a platinum nanoparticle confined in a metal-organic framework (Pt NPs@ZIF) that can sensitively detect UA levels in human serum. Unlike previously reported free radical-catalyzed oxidation systems, its unique electron transfer mechanism confers excellent peroxidase-like activity to Pt NPs@ZIF. In addition, UA can selectively inhibit the chromogenic reaction of TMB, thus reducing the absorbance of the system. Therefore, using the peroxidase-like activity of Pt NPs@ZIF and using TMB as a chromogenic substrate, UA can be detected directly without relying on natural enzymes. The results showed a relatively wide detection range (10-1000 µM) and a low detection limit (0.2 µM). Satisfactory results were also obtained for UA in human serum. This study with simple operation and rapid detection offers a promising method for efficiently detecting UA in serum.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Peroxidase , Ácido Úrico , Platina , Peroxidases , Corantes , Colorimetria/métodos , Peróxido de Hidrogênio
4.
J Colloid Interface Sci ; 660: 771-779, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271812

RESUMO

The peroxidase mimics usually requires the addition of exogenous hydrogen peroxide (H2O2), which greatly hinder their practical applications. Herein, through rational co-modification of multiple elements (potassium (K), chlorine (Cl) and iodine (I)), the modified carbon nitride nanomaterials (KCl/KI-CN) could serve as efficient bifunctional catalysts. The multiple elements doping and the incorporation of cyano groups (CN) are deemed to enhance their photocatalytic and peroxidase-like activity, respectively. Based on the photocatalytic function, H2O2 can be produced continuously and steadily via two-electron oxygen reduction over modified carbon nitride under visible light irradiation. Subsequently, the KCl/KI-CN could catalyze the chromogenic substrate by the in-situ produced H2O2. Taking advantage of the bifunctional properties of modified carbon nitride, we for the first time demonstrate a self-cascade catalytic process and apply successfully for the ascorbic acid (AA) detection and versatile total antioxidant capacity (TAC) evaluation. This paper not only prepares an efficiently bifunctional catalyst but also provides a new self-cascade photocatalytic H2O2 production strategy for the peroxidase-like application.

5.
Biosensors (Basel) ; 13(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504147

RESUMO

Transition metal-N-doped carbon has been demonstrated to mimic natural enzyme activity; in this study, cobalt-nitrogen co-doped carbon (Co-N-C) nanomaterial was developed, and it could be an oxidase mimic. Firstly, Co-N-C with oxidase-like activity boosts the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) to produce the oxidized TMB (oxTMB). And the aromatic primary amino group of oxTMB reacts with nitrite (NO2-) to form diazo groups. Based on this background, we developed a cascade system of a Co-N-C-catalyzed oxidation reaction and a diazotization reaction for nitrite determination. The low detection limit (0.039 µM) indicates that Co-N-C is superior compared with the vast majority of previously reported nitrite assays. This study not only provides a novel nanozyme with sufficiently dispersed active sites, but it also further applies it to the determination of nitrite, which is expected to expand the application of nanozymes in colorimetric analysis.


Assuntos
Colorimetria , Oxirredutases , Oxirredutases/química , Nitritos , Cobalto/química , Carbono/química , Nitrogênio , Limite de Detecção
6.
ACS Appl Mater Interfaces ; 11(34): 31551-31561, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31374172

RESUMO

One-step single-spinneret electrospinning synthesis of 1D fibrous hierarchical structure can not only prevent the agglomeration or restacking of fibers or particles and enlarge surface active area but also promote the directional migration of electrons in materials and achieve effective regulation of resistances. Herein, tunable SnO2 and SnO2/ZnO fibrous hierarchical structures with in situ growth of monodisperse spherical-like particles on surface provide a new sight for adjusting component distribution, surface absorption and chemical reaction, electronic transmission path, and electron transfer efficiency. Compared with SnO2 porous fibers and SnO2 hierarchical structures, the optimal SnO2/ZnO sensors exhibit superior gas-sensing response value of 366-100 ppm ethanol at 260 °C as well as excellent gas selectivity and long-term stability, in which the enhanced gas-sensing mechanism is primarily derived from multilevel effective heterojunctions with unique interface electronic effects. Especially, these SnO2-based sensors can achieve favorable linear relationship of the response and gas concentration for sensitive trace detection in cosmetics for the first time, providing a new strategy to design composite materials for quantitative analysis of volatiles in the cosmetics evaluation process.

7.
ACS Appl Mater Interfaces ; 11(8): 8601-8611, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30702279

RESUMO

Morphology-tunable C-N/SnO2-based hierarchical microspheres with good gas sensitivity for triethylamine (TEA) have been fabricated via facile electrospinning and a subsequent calcination process. The reaction temperature and modifying calcining technology played a dominant role for the morphological evolution from precursor fibers to microspherical shapes and the formation of C-N-decorated SnO2 phase composition. C-N/SnO2/ZnO composites with tunable crystallinity, microstructure, and gas-sensing performance were strictly dependent on the added amount of Zn element. Fascinatingly, the constructed C-N/SnO2/ZnO/Au composites can not only precisely regulate the crystal size, dispersion status, loading position, and content of Au nanoparticles but also display excellent gas-sensing properties with ultrasensitivity and high selectivity under various temperature detections. The response of C-N/SnO2/ZnO/Au composites can reach up to approximately 1970, calculated to be 121.6 and 23.6 times for 50 ppm TEA molecules at optimal conditions compared with C-N/SnO2 and C-N/SnO2/ZnO microspheres, respectively, actually representing the highest response value at high temperatures reported to date. The superior long-aging stability of sensing behaviors and phase structures can be also observed after 1 month. More importantly, novel C-N/SnO2/ZnO/Au sensors were employed for availably detecting low-concentration volatiles released from the storage procedure of fishes at 80 °C, indicating the practical application in chemical detectors and biosensors at low temperature. The novel gas-sensing mechanisms derived primarily from the combination of phase compositions, morphologies, and unique surface/interface transfer processes of C-N/SnO2/ZnO/Au composites are presented and investigated in detail, which will contribute to the design and development of other semiconductor-based composite sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA