Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Microbiol ; 21(3): e12977, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30415487

RESUMO

Klebsiella pneumoniae raises significant concerns to the health care industry as these microbes are the source of widespread contamination of medical equipment, cause pneumonia as well as other multiorgan metastatic infections and have gained multidrug resistance. Despite soaring mortality rates, the host cell alterations occurring during these infections remain poorly understood. Here, we show that during in vitro and in vivo K. pneumoniae infections of lung epithelia, microtubules are severed and then eliminated. This destruction does not require direct association of K. pneumoniae with the host cells, as microtubules are disassembled in cells that are distant from the infecting bacteria. This microtubule dismantling is dependent on the K. pneumoniae (Kp) gene ytfL as non-pathogenic Escherichia coli expressing Kp ytfL disassemble microtubules in the absence of K. pneumoniae itself. Our data points to the host katanin catalytic subunit A like 1 protein (KATNAL1) and the katanin regulatory subunit B1 protein (KATNB1) as the gatekeepers to the microtubule severing event as both proteins localise specifically to microtubule cut sites. Infected cells that had either of these proteins knocked out maintained intact microtubules. Taken together, we have identified a novel mechanism that a bacterial pathogen has exploited to cause microtubule destruction within the host epithelia.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno , Klebsiella pneumoniae/crescimento & desenvolvimento , Microtúbulos/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/patogenicidade , Camundongos Endogâmicos C57BL , Modelos Teóricos , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Fatores de Virulência/metabolismo
2.
Exp Cell Res ; 369(1): 139-146, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778753

RESUMO

The host actin cytoskeleton is utilized by an assortment of pathogenic bacteria to colonize and cause disease in their hosts. Two prominently studied actin-hijacking bacteria are enteropathogenic Escherichia coli (EPEC) and Listeria monocytogenes. EPEC form actin-rich pedestals atop its host cells to move across the intestinal epithelia, while Listeria monocytogenes generate branched actin networks arranged as actin clouds around the bacteria and as comet tails for propulsion within and amongst their host cells. Previous mass spectrometry analysis revealed that a member of the calponin family of actin-bundling proteins, transgelin/SM22 was enriched in EPEC pedestals. To validate that finding and examine the role of SM22 during infections, we initially immunolocalized SM22 in EPEC and L. monocytogenes infected cells, used siRNA to deplete SM22 and EGFP-SM22 to overexpress SM22, then quantified the alterations to the bacterially generated actin structures. SM22 concentrated at all bacterially-generated actin structures. Depletion of SM22 resulted in fewer pedestals and comet tails and caused comet tails to shorten. The decrease in comet tail abundance caused a proportional increase in actin clouds whereas overexpression of SM22 reversed the actin cloud to comet tail proportions and increased comet tail length, while not influencing EPEC pedestal abundance. Thus, we demonstrate that SM22 plays a role in regulating the transitions and morphological appearance of bacterially generated actin-rich structures during infections.


Assuntos
Actinas/metabolismo , Infecções Bacterianas/metabolismo , Estruturas Celulares/metabolismo , Estruturas Celulares/microbiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/patologia , Células CACO-2 , Células Cultivadas , Estruturas Celulares/patologia , Escherichia coli Enteropatogênica , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Células HeLa , Humanos , Listeria monocytogenes , Listeriose/genética , Listeriose/metabolismo , Potoroidae
3.
Anat Rec (Hoboken) ; 306(5): 1140-1148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35488878

RESUMO

The actin cytoskeleton forms much of the structure needed for the intracellular motility of an assortment of microbes as well as entire cells. The co-factor to the ubiquitin conjugating enzyme Ube2N (Ube2V1) has been implicated in both cancer cell metastasis and lysine-63 ubiquitylation of ß actin. As this protein complexes with Ube2N, we sought to investigate whether Ube2N itself was involved in actin-based events occurring during the Listeria monocytogenes infections as well as within motile whole cells. Through examination of L. monocytogenes actin clouds, comet tails and membrane protrusions as well as lamellipodia in migrating cells, we show that Ube2N is recruited to actin-rich structures. When pharmacologically inhibited we demonstrate that Ube2N is crucial for the function of actin-rich structures when associated with the plasma membrane.


Assuntos
Listeria monocytogenes , Listeria , Actinas/metabolismo , Listeria/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Pseudópodes/metabolismo , Listeria monocytogenes/metabolismo
4.
Anat Rec (Hoboken) ; 301(12): 2103-2111, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312538

RESUMO

The ingestion of enteropathogenic Escherichia coli (EPEC), Listeria monocytogenes, or Salmonella enterica serovar Typhimurium leads to their colonization of the intestinal lumen, which ultimately causes an array of ailments ranging from diarrhea to bacteremia. Once in the intestines, these microbes generate various actin-rich structures to attach, invade, or move within the host intestinal epithelial cells. Although an assortment of actin-associated proteins has been identified to varying degrees at these structures, the localization of many actin stabilizing proteins have yet to be analyzed. Here, we examined the recruitment of the actin-associated proteins, calponin 1 and 2 at EPEC pedestals, L. monocytogenes actin clouds, comet tails and listeriopods, and S. Typhimurium membrane ruffles. In other systems, calponins are known to bind to and stabilize actin filaments. In EPEC pedestals, calponin 1 was recruited uniformly throughout the structures while calponin 2 was enriched at the apical tip. During L. monocytogenes infections, calponin 1 was found through all the actin-rich structures generated by the bacteria, while calponin 2 was only present within actin-rich structures formed by L. monocytogenes near the host cell membrane. Finally, both calponins were found within S. Typhimurium-generated membrane ruffles. Taken together, we have shown that although calponin 1 is recruited to actin-rich structures formed by the three bacteria, calponin 2 is specifically recruited to only membrane-bound actin-rich structures formed by the bacteria. Thus, our findings suggest that calponin 2 is a novel marker for membrane-bound actin structures formed by pathogenic bacteria. Anat Rec, 301:2103-2111, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Actinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Listeria monocytogenes/metabolismo , Proteínas dos Microfilamentos/metabolismo , Salmonella enterica/metabolismo , Actinas/análise , Células CACO-2 , Proteínas de Ligação ao Cálcio/análise , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Escherichia coli Enteropatogênica/química , Humanos , Listeria monocytogenes/química , Proteínas dos Microfilamentos/análise , Salmonella enterica/química , Calponinas
5.
J Microbiol Methods ; 93(2): 153-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23523968

RESUMO

Francisella tularensis (F. tularensis), the causative agent of tularemia, has long been known to invade and occupy non-phagocytic epithelial cells. Many epithelial cell infection models have been developed to study this process; however, due to the lack of consensus on infection methods and precise experimental procedures to evaluate invasion and replication, selection of appropriate models to use based on the literature is challenging. To evaluate in vitro non-phagocytic cell infection models, we chose 8 epithelial cultured cell lines from published models to infect with F. tularensis subspecies novicida (F. novicida) and compared the results to a recently developed model that used the mouse hepatocyte BNL CL.2 cell line. We utilized classical gentamicin-based invasion assays to determine total intracellular bacterial loads and employed microscopic examination with staining techniques that distinguished between intracellular and extracellular bacteria to provide an accurate assessment of the proportion of invaded host cells and the degree of bacterial replication. We found that COS-7 cells exhibited the greatest invasion rates; CMT-93 cells contained the largest intracellular bacterial loads; ad HEK-293s were capable of invasion and replication rates at high levels, but required shorter infection incubation times. Although COS-7, CMT-93 and HEK-293 cell lines may be suited to study certain aspects of invasion or replication, we found that BNL CL.2 cells appeared the most appropriate to study the overall pathogenesis of F. novicida when examined in toto.


Assuntos
Endocitose , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Francisella tularensis/patogenicidade , Animais , Carga Bacteriana , Linhagem Celular , Citoplasma/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA