Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(4): 1803-1816, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26631732

RESUMO

Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis.


Assuntos
Doença de Parkinson/enzimologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Humanos , Mitocôndrias/enzimologia , Doença de Parkinson/genética , Fosforilação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
2.
J Biol Chem ; 291(4): 1841-1853, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26631731

RESUMO

TRAP1 (tumor necrosis factor receptor-associated protein 1), a mitochondrial Hsp90 family chaperone, has been identified as a critical regulator of cell survival and bioenergetics in tumor cells. To discover novel signaling networks regulated by TRAP1, we generated Drosophila TRAP1 mutants. The mutants successfully developed into adults and produced fertile progeny, showing that TRAP1 is dispensable in development and reproduction. Surprisingly, mutation or knockdown of TRAP1 markedly enhanced Drosophila survival under oxidative stress. Moreover, TRAP1 mutation ameliorated mitochondrial dysfunction and dopaminergic (DA) neuron loss induced by deletion of a familial Parkinson disease gene PINK1 (Pten-induced kinase 1) in Drosophila. Gamitrinib-triphenylphosphonium, a mitochondria-targeted Hsp90 inhibitor that increases cell death in HeLa and MCF7 cells, consistently inhibited cell death induced by oxidative stress and mitochondrial dysfunction induced by PINK1 mutation in mouse embryonic fibroblast cells and DA cell models such as SH-SY5Y and SN4741 cells. Additionally, gamitrinib-triphenylphosphonium also suppressed the defective locomotive activity and DA neuron loss in Drosophila PINK1 null mutants. In further genetic analyses, we showed enhanced expression of Thor, a downstream target gene of transcription factor FOXO, in TRAP1 mutants. Furthermore, deletion of FOXO almost nullified the protective roles of TRAP1 mutation against oxidative stress and PINK1 mutation. These results strongly suggest that inhibition of the mitochondrial chaperone TRAP1 generates a retrograde cell protective signal from mitochondria to the nucleus in a FOXO-dependent manner.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Guanidinas/farmacologia , Proteínas de Choque Térmico HSP90/genética , Lactamas Macrocíclicas/farmacologia , Mitocôndrias/metabolismo , Compostos Organosselênicos/farmacologia , Doença de Parkinson/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Drosophila/efeitos dos fármacos , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Feminino , Fatores de Transcrição Forkhead/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mutação , Estresse Oxidativo , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA