RESUMO
Advances in immunotherapy in the last decade have revolutionized treatment paradigms across multiple cancer diagnoses. However, only a minority of patients derive durable benefit and progress with traditional approaches, such as cancer vaccines, remains unsatisfactory. A key to overcoming these barriers resides with a deeper understanding of tumor antigen presentation and the complex and dynamic heterogeneity of tumor-infiltrating antigen-presenting cells (APCs). Reminiscent of the 'second touch' hypothesis proposed by Klaus Ley for CD4+ T cell differentiation, the acquisition of full effector potential by lymph node- primed CD8+ T cells requires a second round of co-stimulation at the site where the antigen originated, i.e. the tumor bed. The tumor stroma holds a prime role in this process by hosting specialized APC niches, apparently distinct from tertiary lymphoid structures, that support second antigenic touch encounters and CD8+ T cell effector proliferation and differentiation. We propose that APC within second-touch niches become licensed for co-stimulation through stromal-derived instructive signals emulating embryonic or wound-healing provisional matrix remodeling. These immunostimulatory roles of stroma contrast with its widely accepted view as a physical and functional 'immune barrier'. Stromal control of antigen presentation makes evolutionary sense as the host stroma-tumor interface constitutes the prime line of homeostatic 'defense' against the emerging tumor. In this review, we outline how stroma-derived signals and cells regulate tumor antigen presentation and T-cell effector differentiation in the tumor bed. The re-definition of tumor stroma as immune rheostat rather than as inflexible immune barrier harbors significant untapped therapeutic opportunity.
Assuntos
Apresentação de Antígeno , Neoplasias , Humanos , Células Apresentadoras de Antígenos , Linfócitos T CD4-Positivos , Ativação Linfocitária , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Células DendríticasRESUMO
NRAS Q61 mutations are prevalent in advanced/relapsed multiple myeloma (MM) and correlate with poor patient outcomes. Thus, we generated a novel MM model by conditionally activating expression of endogenous NrasQ61R and an MYC transgene in germinal center (GC) B cells (VQ mice). VQ mice developed a highly malignant MM characterized by a high proliferation index, hyperactivation of extracellular signal-regulated kinase and AKT signaling, impaired hematopoiesis, widespread extramedullary disease, bone lesions, kidney abnormalities, preserved programmed cell death protein 1 and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain immune-checkpoint pathways, and expression of human high-risk MM gene signatures. VQ MM mice recapitulate most of the biological and clinical features of human advanced/high-risk MM. These MM phenotypes are serially transplantable in syngeneic recipients. Two MM cell lines were also derived to facilitate future genetic manipulations. Combination therapies based on MEK inhibition significantly prolonged the survival of VQ mice with advanced-stage MM. Our study provides a strong rationale to develop MEK inhibition-based therapies for treating advanced/relapsed MM.
Assuntos
Linfócitos B/patologia , Modelos Animais de Doenças , Proteínas Monoméricas de Ligação ao GTP/genética , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Centro Germinativo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/patologia , TransgenesRESUMO
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Assuntos
Neoplasias , Proteoglicanas , Matriz Extracelular/patologia , Humanos , Inflamação , Neoplasias/patologia , Transdução de SinaisRESUMO
Conventional type 1 dendritic cells (cDC1s) are critical for innate sensing of cancer, yet they are scarce in the tumor microenvironment (TME). Here, we present a protocol to identify and isolate cDC1 subsets from murine implantable tumors for subsequent transcriptomic profiling using a flow sorting-based strategy. We describe steps for cell culture of mouse tumors, tumoral growth, dissociation and isolation of tumoral cells, extracellular staining, and cell sorting. We then detail procedures for RNA isolation, mRNA library preparation, and sequencing. For complete details on the use and execution of this protocol, please refer to Papadas et al.1.
Assuntos
Células Dendríticas , Perfilação da Expressão Gênica , Animais , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Camundongos , Perfilação da Expressão Gênica/métodos , Citometria de Fluxo/métodos , Microambiente Tumoral/genética , Transcriptoma/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Separação Celular/métodos , Camundongos Endogâmicos C57BLRESUMO
Stimulatory type 1 conventional dendritic cells (cDC1s) engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. The paradoxical accumulation of "poised" cDC1s within stromal sheets is unlikely to simply reflect passive exclusion from tumor cores. Drawing parallels with embryonic morphogenesis, we hypothesized that invasive margin stromal remodeling generates developmentally conserved cell fate cues that regulate cDC1 behavior. We find that, in human T cell-inflamed tumors, CD8+ T cells penetrate tumor nests, whereas cDC1s are confined within adjacent stroma that recurrently displays site-specific proteolysis of the matrix proteoglycan versican (VCAN), an essential organ-sculpting modification in development. VCAN is necessary, and its proteolytic fragment (matrikine) versikine is sufficient for cDC1 accumulation. Versikine does not influence tumor-seeding pre-DC differentiation; rather, it orchestrates a distinctive cDC1 activation program conferring exquisite sensitivity to DNA sensing, supported by atypical innate lymphoid cells. Thus, peritumoral stroma mimicking embryonic provisional matrix remodeling regulates cDC1 abundance and activity to elicit T cell-inflamed tumor microenvironments.
Assuntos
Neoplasias , Microambiente Tumoral , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Humanos , Imunidade Inata , Linfócitos/metabolismo , Neoplasias/patologia , Versicanas/metabolismoRESUMO
Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk.