RESUMO
Globally, primary liver cancer is the third leading cause of cancer-related deaths, with approximately 830 000 deaths worldwide in 2020, accounting for 8.3% of total deaths from all cancer types (1). This disease disproportionately affects those in countries with low or medium Human Development Index scores in Eastern Asia, South-Eastern Asia, and Northern and Western Africa (2). Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, often develops in the background of chronic liver disease, caused by hepatitis B or C virus, non-alcoholic steatohepatitis (NASH), or other diseases that cause cirrhosis. Prognosis can vary dramatically based on number, size, and location of tumors. Hepatic synthetic dysfunction and performance status (PS) also impact survival. The Barcelona Clinic Liver Cancer (BCLC) staging system best accounts for these variations, providing a reliable prognostic stratification. Therapeutic considerations of this complex disease necessitate a multidisciplinary approach and can range from curative-intent surgical resection, liver transplantation or image-guided ablation to more complex liver-directed therapies like transarterial chemoembolization (TACE) and systemic therapy. Recent advances in the understanding of the tumor biology and microenvironment have brought new advances and approvals for systemic therapeutic agents, often utilizing immunotherapy or VEGF-targeted agents to modulate the immune response. This review will discuss the current landscape in the treatments available for early, intermediate, and advanced stage HCC.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Antineoplásicos/uso terapêutico , Resultado do Tratamento , Estadiamento de Neoplasias , Microambiente TumoralRESUMO
This commentary reviews top advances in hepatobiliary cancer research in 2021-2022, focusing on leveraging immunotherapeutics in combination with other therapies earlier in the disease course and targeted to patient's individualized biomarkers that may predict response or resistance to checkpoint inhibitors.
Assuntos
Neoplasias do Sistema Biliar , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Neoplasias do Sistema Biliar/terapia , Carcinoma Hepatocelular/terapia , ImunoterapiaRESUMO
BACKGROUND: Microsatellite stable colorectal liver metastases (MSS CLM) maintain an immunosuppressive tumor microenvironment (TME). Historically, immune-based approaches have been ineffective. VB-111 (ofranergene obadenovec) is a genetically-modified adenoviral vector targeting the TME; its unique dual mechanism induces an immune response and disrupts neovascularization. Checkpoint inhibition may synergize the immune response induced by viral-mediated anti-angiogenic gene therapy. We aimed to examine the safety and antitumor activity of VB-111 and nivolumab in patients with refractory MSS CLM and to characterize immunological treatment-response. METHODS: This was a phase II study of adult patients with histologically-confirmed MSS CLM who progressed on prior therapy. A priming dose of VB-111 1×1013 viral particles was given intravenously 2 weeks prior to starting biweekly nivolumab 240 mg and continued every 6 weeks. The combination continued until disease progression or unacceptable toxicity. The primary objectives were overall response rate and safety/tolerability. Secondary objectives included median overall survival and progression-free survival. Correlative studies were performed on paired tumor biopsies and blood. RESULTS: Between August 2020 and December 2021, 14 patients were enrolled with median age 50.5 years (40-75), and 14% were women. Median follow-up was 5.5 months. Of the 10 evaluable patients, the combination of VB-111 and nivolumab failed to demonstrate radiographic responses; at best, 2 patients had stable disease. Median overall survival was 5.5 months (95% CI: 2.3 to 10.8), and median progression-free survival was 1.8 months (95% CI: 1.4 to 1.9). The most common grade 3-4 treatment-related adverse events were fever/chills, influenza-like symptoms, and lymphopenia. No treatment-related deaths were reported. Qualitative analysis of immunohistochemical staining of paired tumor biopsies did not demonstrate significant immune infiltration after treatment, except for one patient who had exceptional survival (26.0 months). Immune analysis of peripheral blood mononuclear cells showed an increase of PD-1highKi67highCD8+ T cells and HLA-DRhigh T cells after VB-111 priming dose. Plasma cytokines interleukin-10 and tumor necrosis factor-α increased after treatment with both drugs. CONCLUSION: In patients with MSS CLM, VB-111 and nivolumab did not improve overall response rate or survival but were tolerated with minimal toxicities. While challenging to distinguish between antiviral or antitumor, correlative studies demonstrated an immune response with activation and proliferation of CD8+ T cells systemically that was poorly sustained. TRIAL REGISTRATION NUMBER: NCT04166383.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Nivolumabe/uso terapêutico , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inibidores da Angiogênese , Repetições de Microssatélites , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Microambiente TumoralRESUMO
BACKGROUND: Current standard of care for advanced biliary tract cancer (BTC) is gemcitabine, cisplatin plus anti-PD1/PD-L1, but response rates are modest. The purpose of this study was to explore the efficacy and safety of durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4), with and without an interventional radiology (IR) procedure in advanced BTC. METHODS: Eligible patients with advanced BTC who had received or refused at least one prior line of systemic therapy were treated with tremelimumab and durvalumab for four combined doses followed by monthly durvalumab alone with and without an IR procedure until the progression of disease or unacceptable toxicity. Objective response was assessed through CT or MRI by Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1) every 8 weeks. Adverse events (AEs) were recorded and managed. The primary endpoint was 6-month progression-free survival (PFS). RESULTS: Twenty-three patients with advanced BTC were enrolled; 17 patients were assigned to treatment with durvalumab and tremelimumab (Durva/Treme); and 6 patients were treated with the combination of durvalumab, tremelimumab plus IR procedure (Durva/Treme + IR). The best clinical responses in the Durva/Treme arm were partial response (n = 1), stable disease (n = 5), progressive disease (n = 5), and in the Durva/Treme + IR arm: partial response (n = 0), stable disease (n = 3), progressive disease (n = 3). The median PFS was 2.2 months (95% CI: 1.3-3.1 months) in the Durva/Treme arm and 2.9 months (95% CI: 1.9-4.7 months) in the Durva/Treme + IR arm (p = 0.27). The median OS was 5.1 months (95% CI: 2.5-6.9 months) in the Durva/Treme arm and 5.8 months (95% CI: 2.9-40.1 months) in the Durva/Treme + IR arm (p = 0.31). The majority of AEs were grades 1-2. CONCLUSION: Durva/Treme and Durva/Treme + IR showed similar efficacy. With a manageable safety profile. Larger studies are needed to fully characterize the efficacy of Durva/Treme ± IR in advanced BTC.