Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186201, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977638

RESUMO

Under certain experimental conditions, the deposition of C_{60} molecules onto an atomically flat copper surface gives rise to the formation of corrugated islands. This corrugation, which reflects a molecular displacement perpendicular to the surface plane, presents an astonishing pattern: It is well described by a frustrated Ising spin Hamiltonian whose thermodynamics is compatible with a spin liquid about to transit toward an ordered zigzag state. Here we study the statistical properties of such a molecular corrugation using a structure factor analysis, a tool generally employed in frustrated magnetism. More specifically, the real and reciprocal space analysis of pairwise molecule correlations allows us to demonstrate that the C_{60}/Cu system, in which magnetism is totally absent, has all the characteristics of a triangular Ising antiferromagnet. Our results indicate that the organization of two-dimensional matter, at the molecular length scale, sometimes turns out to be particularly close to that encountered in highly frustrated magnets.

2.
Phys Rev Lett ; 131(16): 166701, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925737

RESUMO

Under certain boundary conditions, the square ice model exhibits a phase separation in which the core of the system is disordered while its outer region remains ordered. This phenomenon, known as the "arctic circle," has been studied theoretically in combinatorial mathematics and statistical mechanics. Here, we realize the physics of the arctic circle experimentally for the first time, using a programmable lattice of superconducting qubits, and investigate its properties under the prism of a highly frustrated magnet. Our work reveals two unexpected properties. First, the disordered spin manifold confined within the arctic curve is a spin liquid whose average spin texture resembles that of an antivortex, i.e., it is a topologically charged Coulomb phase. Second, monopole quasiparticle excitations, which are totally absent in theoretical works, can be isolated in a phase-separated system. Remarkably, a monopole segregation mechanism is observed, in which the monopoles are sorted according to the magnetic charge and magnetic moment they carry, without the application of an external driving force.

3.
Phys Rev Lett ; 111(24): 246805, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483689

RESUMO

We report a new way to strongly couple graphene to a superconductor. The graphene monolayer has been grown directly on top of a superconducting Re(0001) thin film and characterized by scanning tunneling microscopy and spectroscopy. We observed a moiré pattern due to the mismatch between Re and graphene lattice parameters that we have simulated with ab initio calculations. The density of states around the Fermi energy appears to be position dependent on this moiré pattern. Tunneling spectroscopy performed at 50 mK shows that the superconducting behavior of graphene on Re is well described by the Bardeen-Cooper-Schrieffer theory and stands for a very good interface between the graphene and its metallic substrate.

4.
Sci Rep ; 6: 24783, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27114039

RESUMO

Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent already a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism.

5.
Sci Rep ; 6: 25670, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181495

RESUMO

Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene's electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC and on the close-packed surfaces of Re and Ir with ultra-high precision. We resolve small-angle twists and shears in graphene, and identify large unit cells comprising more than 1,000 carbon atoms and exhibiting non-trivial nanopatterns for moiré superlattices, which are commensurate to the graphene lattice. Finally, a general formalism applicable to any hexagonal moiré is presented to classify all reported structures.

6.
Sci Rep ; 6: 23663, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27040365

RESUMO

The exceptional electronic properties of monatomic thin graphene sheets triggered numerous original transport concepts, pushing quantum physics into the realm of device technology for electronics, optoelectronics and thermoelectrics. At the conceptual pivot point is the particular two-dimensional massless Dirac fermion character of graphene charge carriers and its volitional modification by intrinsic or extrinsic means. Here, interfaces between different electronic and structural graphene modifications promise exciting physics and functionality, in particular when fabricated with atomic precision. In this study we show that quasiperiodic modulations of doping levels can be imprinted down to the nanoscale in monolayer graphene sheets. Vicinal copper surfaces allow to alternate graphene carrier densities by several 10(13) carriers per cm(2) along a specific copper high-symmetry direction. The process is triggered by a self-assembled copper faceting process during high-temperature graphene chemical vapor deposition, which defines interfaces between different graphene doping levels at the atomic level.

7.
Nanoscale ; 8(5): 2561-7, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26785923

RESUMO

The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.

8.
Phys Rev Lett ; 102(5): 056808, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257540

RESUMO

Epitaxial graphene on Ir(111) prepared in excellent structural quality is investigated by angle-resolved photoelectron spectroscopy. It clearly displays a Dirac cone with the Dirac point shifted only slightly above the Fermi level. The moiré resulting from the overlaid graphene and Ir(111) surface lattices imposes a superperiodic potential giving rise to Dirac cone replicas and the opening of minigaps in the band structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA