Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 65(4): 1025-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24399175

RESUMO

Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, is a serious, recently emerged disease of barley in Europe and other temperate regions. This study investigated the trade off between strong resistance to powdery mildew conferred by mlo mutant alleles and increased susceptibility to RLS. In field trials and seedling tests, the presence of mlo alleles increased severity of RLS. Genetic analysis of a doubled-haploid population identified one quantitative trait locus for susceptibility to RLS, colocalizing with the mlo-11 allele for mildew resistance. The effect of mlo-11 on RLS severity was environmentally sensitive. Analysis of near-isogenic lines of different mlo mutations in various genetic backgrounds confirmed that mlo alleles increased RLS severity in seedlings and adult plants. For mlo resistance to mildew to be fully effective, the genes ROR1 and ROR2 are required. RLS symptoms were significantly reduced on mlo-5 ror double mutants but fungal DNA levels remained as high as in mlo-5 single mutants, implying that ror alleles modify the transition of the fungus from endophytism to necrotrophy. These results indicate that the widespread use of mlo resistance to control mildew may have inadvertently stimulated the emergence of RLS as a major disease of barley.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Hordeum/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Europa (Continente) , Hordeum/imunologia , Hordeum/microbiologia , Hordeum/fisiologia , Mutação , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Plântula/fisiologia
2.
Mol Plant Pathol ; 16(2): 201-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25040333

RESUMO

NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS.


Assuntos
Ascomicetos/patogenicidade , Hordeum/metabolismo , Hordeum/microbiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Secas , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA