Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Environ Microbiol ; 81(16): 5497-510, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048925

RESUMO

The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml(-1) could be achieved even with a nonoptimized cultivation procedure.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Saccharomycetales/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Cromatografia de Afinidade , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos da radiação , Expressão Gênica , Concentração de Íons de Hidrogênio , Resíduos Industriais , Malus/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Solventes , Especificidade por Substrato , Temperatura
2.
Chemosphere ; 358: 142112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677613

RESUMO

The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS2). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.


Assuntos
Diclofenaco , Lacase , Oxirredução , Ozônio , Águas Residuárias , Poluentes Químicos da Água , Diclofenaco/química , Diclofenaco/metabolismo , Lacase/metabolismo , Lacase/química , Ozônio/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Cinética , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Polyporaceae
3.
Environ Sci Pollut Res Int ; 30(18): 53128-53139, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36853537

RESUMO

Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove persistent micropollutants while excluding the emission of potentially harmful by-products.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Acetaminofen , Lacase , Trametes , Ozônio/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
4.
AMB Express ; 8(1): 28, 2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-29478084

RESUMO

The inadequate removal of pharmaceuticals and other micropollutants in municipal wastewater treatment plants, as evidenced by their detection of these substances in the aquatic environment has led to the need for sustainable remediation strategies. Laccases possess a number of advantages including a broad substrate spectrum. To identify promoting or inhibitory effects of reaction partners in the remediation processes we tested not only single compounds-as has been described in most studies-but also mixtures of pollutants. The reaction of diclofenac (DCF) and flufenamic acid (FA), mediated by Trametes versicolor laccase resulted in the formation of products, which were more hydrophilic than the respective reactant (reactant concentration of 0.1 mM; laccase activity 0.5 U/ml). Analyses (HPLC, LC/MS) showed that the product 1a and 1b for DCF and FA, respectively, to be a para-benzoquinone imine derivative. The formation of 1a was enhanced by the addition of bisphenol A (BPA). After 6 days 97% more product was formed in the mixture of DCF and BPA compared with DCF tested alone. Product 1a was also detected in experiments with micropollutant-supplemented secondary effluent. Within 24 h 67% and 100% of DCF and BPA were transformed, respectively (25 U/ml). Experiments with a membrane reactor (volume 10 l; phosphate buffer, pH 7) were in good agreement with the results of the laboratory scale experiments (50 ml). EC50-values were also determined. The data support the use of laccases for the removal or detoxification of recalcitrant pollutants. Thus, the enzyme laccase may be a component of an additional environmentally friendly process for the treatment stage of wastewater remediation.

5.
N Biotechnol ; 33(3): 387-98, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26844639

RESUMO

Laccases from different sources are employed in a number of biotechnological processes, each characterized by specific reaction constraints and thus requiring an enzyme with suitable properties. In order to avoid the bias generated by different assay methodologies, in this work we investigated the main properties of ten laccases from fungi and bacteria under identical conditions. As a general rule, the optimal activity was apparent at pH 3-4 and was lost at pH≥7.0 (all laccases were stable at pH≥7.0); enzymes active at neutral pH values were also identified. For all tested laccases, activity increased with temperature up to 80°C and stability was good at 25°C. Interestingly, laccases insensitive to high salt concentration were identified, this favoring their use in treating waste waters. Indeed, bacterial laccases retained a significant activity in the presence of DMSO (up to 40% final concentration) and of surfactants, suggesting that they can be applied in lignin degradation processes requiring solvents. The available laccases are versatile and satisfy requirements related to different processes. Notably, the recombinant laccase from Bacillus licheniformis favorably compares with the tested enzymes, indicating that it is well suited for different biotechnological applications.


Assuntos
Bactérias/enzimologia , Fungos/enzimologia , Microbiologia Industrial , Lacase/metabolismo , Benzotiazóis/química , Dimetil Sulfóxido/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Lacase/isolamento & purificação , Polissorbatos/farmacologia , Cloreto de Sódio/farmacologia , Ácidos Sulfônicos/química , Temperatura
6.
Bioengineered ; 6(1): 20-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25513995

RESUMO

The purine degradation pathway in humans ends with uric acid, which has low water solubility. When the production of uric acid is increased either by elevated purine intake or by impaired kidney function, uric acid will accumulate in the blood (hyperuricemia). This increases the risk of gout, a disease described in humans for at least 1000 years. Many lower organisms, such as the yeast Arxula adeninivorans, possess the enzyme, urate oxidase that converts uric acid to 5-hydroxyisourate, thus preventing uric acid accumulation. We have examined the complete purine degradation pathway in A. adeninivorans and analyzed enzymes involved. Recombinant adenine deaminase, guanine deaminase, urate oxidase and endogenous xanthine oxidoreductase have been investigated as potential additives to degrade purines in the food. Here, we review the current model of the purine degradation pathway of A. adeninivorans and present an overview of proposed enzyme system with perspectives for its further development.


Assuntos
Aditivos Alimentares/metabolismo , Proteínas Fúngicas/metabolismo , Purinas/metabolismo , Saccharomycetales/enzimologia , Urato Oxidase/metabolismo , Proteínas Fúngicas/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Urato Oxidase/genética
7.
J Mol Microbiol Biotechnol ; 24(2): 67-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24481069

RESUMO

Purines of exogenous and endogenous sources are degraded to uric acid in human beings. Concentrations >6.8 mg uric acid/dl serum cause hyperuricemia and its symptoms. Pharmaceuticals and the reduction of the intake of purine-rich food are used to control uric acid levels. A novel approach to the latter proposition is the enzymatic reduction of the purine content of food by purine-degrading enzymes. Here we describe the production of recombinant guanine deaminase by the yeast Arxula adeninivorans LS3 and its application in food. In media supplemented with nitrogen sources hypoxanthine or adenine, guanine deaminase (AGDA) gene expression is induced and intracellular accumulation of guanine deaminase (Agdap) protein occurs. The characteristics of the guanine deaminase isolated from wild-type strain LS3 and a transgenic strain expressing the AGDA gene under control of the strong constitutive TEF1 promoter were determined and compared. Both enzymes were dimeric and had temperature optima of 55°C with high substrate specificity for guanine and localisation in both the cytoplasm and vacuole of yeast. The enzyme was demonstrated to reduce levels of guanine in food. A mixture of guanine deaminase and other purine degradation enzymes will allow the reduction of purines in purine-rich foods.


Assuntos
Microbiologia de Alimentos , Guanina Desaminase/metabolismo , Purinas/análise , Saccharomycetales/enzimologia , Estabilidade Enzimática , Análise de Alimentos , Guanina Desaminase/química , Guanina Desaminase/genética , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Especificidade por Substrato , Temperatura
8.
J Mol Microbiol Biotechnol ; 23(6): 418-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24022585

RESUMO

Hyperuricemia and its symptoms are becoming increasingly common worldwide. Elevated serum uric acid levels are caused by increased uric acid synthesis from food constituents and reduced renal excretion. Treatment in most cases involves reducing alcohol intake and consumption of meat and fish or treatment with pharmaceuticals. Another approach could be to reduce uric acid level in food, either during production or consumption. This work reports the production of recombinant urate oxidase by Arxula adeninivorans and its application to reduce uric acid in a food product. The A. adeninivorans urate oxidase amino acid sequence was found to be similar to urate oxidases from other fungi (61-65% identity). In media supplemented with adenine, hypoxanthine or uric acid, induction of the urate oxidase (AUOX) gene and intracellular accumulation of urate oxidase (Auoxp) was observed. The enzyme characteristics were analyzed from isolates of the wild-type strain A. adeninivorans LS3, as well as from those of transgenic strains expressing the AUOX gene under control of the strong constitutive TEF1 promoter or the inducible AYNI1 promoter. The enzyme showed high substrate specificity for uric acid, a broad temperature and pH range, high thermostability and the ability to reduce uric acid content in food.


Assuntos
Manipulação de Alimentos/métodos , Saccharomycetales/enzimologia , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo , Adenina/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Estabilidade Enzimática , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Hipoxantina/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , Urato Oxidase/química , Urato Oxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA