Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8024): 443-450, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925148

RESUMO

Precursor-mRNA (pre-mRNA) splicing requires the assembly, remodelling and disassembly of the multi-megadalton ribonucleoprotein complex called the spliceosome1. Recent studies have shed light on spliceosome assembly and remodelling for catalysis2-6, but the mechanism of disassembly remains unclear. Here we report cryo-electron microscopy structures of nematode and human terminal intron lariat spliceosomes along with biochemical and genetic data. Our results uncover how four disassembly factors and the conserved RNA helicase DHX15 initiate spliceosome disassembly. The disassembly factors probe large inner and outer spliceosome surfaces to detect the release of ligated mRNA. Two of these factors, TFIP11 and C19L1, and three general spliceosome subunits, SYF1, SYF2 and SDE2, then dock and activate DHX15 on the catalytic U6 snRNA to initiate disassembly. U6 therefore controls both the start5 and end of pre-mRNA splicing. Taken together, our results explain the molecular basis of the initiation of canonical spliceosome disassembly and provide a framework to understand general spliceosomal RNA helicase control and the discard of aberrant spliceosomes.


Assuntos
Caenorhabditis elegans , Microscopia Crioeletrônica , RNA Helicases DEAD-box , Modelos Moleculares , Precursores de RNA , Splicing de RNA , RNA Nuclear Pequeno , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Spliceossomos/química , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/química , Animais , Precursores de RNA/metabolismo , Precursores de RNA/genética , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/química , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Íntrons/genética , RNA Helicases
2.
Elife ; 72018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30251626

RESUMO

T-box riboswitches are cis-regulatory RNA elements that regulate the expression of proteins involved in amino acid biosynthesis and transport by binding to specific tRNAs and sensing their aminoacylation state. While the T-box modular structural elements that recognize different parts of a tRNA have been identified, the kinetic trajectory describing how these interactions are established temporally remains unclear. Using smFRET, we demonstrate that tRNA binds to the riboswitch in two steps, first anticodon recognition followed by the sensing of the 3' NCCA end, with the second step accompanied by a T-box riboswitch conformational change. Studies on site-specific mutants highlight that specific T-box structural elements drive the two-step binding process in a modular fashion. Our results set up a kinetic framework describing tRNA binding by T-box riboswitches, and suggest such binding mechanism is kinetically beneficial for efficient, co-transcriptional recognition of the cognate tRNA ligand.


Assuntos
Anticódon/genética , Genes Reguladores/genética , RNA de Transferência/genética , Riboswitch/genética , Aminoácidos/genética , Bacillus subtilis/genética , Sítios de Ligação/genética , Cinética , Ligantes , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA