Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 105(3): 194-201, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253398

RESUMO

Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.


Assuntos
Produtos Biológicos , Depsipeptídeos , Camundongos , Animais , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Depsipeptídeos/metabolismo , Depsipeptídeos/uso terapêutico , Morte Súbita Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
2.
Biophys J ; 122(2): 386-396, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36463408

RESUMO

The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in µM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.


Assuntos
Insuficiência Cardíaca , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Humanos , Camundongos , Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Células HEK293 , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tiofenos/farmacologia
3.
J Mol Cell Cardiol ; 180: 1-9, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080450

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and morbidity. The strongest genetic risk factors for AF in humans are variants on chromosome 4q25, near the paired-like homeobox transcription factor 2 gene PITX2. Although mice deficient in Pitx2 (Pitx2+/-) have increased AF susceptibility, the mechanism remains controversial. Recent evidence has implicated hyperactivation of the cardiac ryanodine receptor (RyR2) in Pitx2 deficiency, which may be associated with AF susceptibility. We investigated pacing-induced AF susceptibility and spontaneous Ca2+ release events in Pitx2 haploinsufficient (+/-) mice and isolated atrial myocytes to test the hypothesis that hyperactivity of RyR2 increases susceptibility to AF, which can be prevented by a potent and selective RyR2 channel inhibitor, ent-verticilide. Compared with littermate wild-type Pitx2+/+, the frequency of Ca2+ sparks and spontaneous Ca2+ release events increased in permeabilized and intact atrial myocytes from Pitx2+/- mice. Atrial burst pacing consistently increased the incidence and duration of AF in Pitx2+/- mice. The RyR2 inhibitor ent-verticilide significantly reduced the frequency of spontaneous Ca2+ release in intact atrial myocytes and attenuated AF susceptibility with reduced AF incidence and duration. Our data demonstrate that RyR2 hyperactivity enhances SR Ca2+ leak and AF inducibility in Pitx2+/- mice via abnormal Ca2+ handling. Therapeutic targeting of hyperactive RyR2 in AF using ent-verticilide may be a viable mechanism-based approach to treat atrial arrhythmias caused by Pitx2 deficiency.


Assuntos
Fibrilação Atrial , Depsipeptídeos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
J Biol Chem ; 298(1): 101412, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793835

RESUMO

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Assuntos
Técnicas Biossensoriais , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Camundongos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/análise , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
5.
Biochem Biophys Res Commun ; 645: 97-102, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682333

RESUMO

Insufficient sarco/endoplasmic reticulum calcium ATPase (SERCA) activity significantly contributes to heart failure, which is a leading cause of death worldwide. A characteristic pathology of cardiac disease is the slow and incomplete Ca2+ removal from the myocyte cytoplasm in diastole, which is primarily driven by SERCA, the integral transmembrane Ca2+ pump. Phospholamban (PLB) allosterically inhibits SERCA by reducing its apparent Ca2+ affinity. Recently, the 34-codon novel dwarf open reading frame (DWORF) micropeptide has been identified as a muscle-specific SERCA effector, capable of reversing the inhibitory effects of PLB and independently activating SERCA in the absence of PLB. However, the structural basis for these functions has not yet been determined in a system of defined molecular components. We have used electron paramagnetic resonance (EPR) spectroscopy to investigate the protein-protein interactions of DWORF, co-reconstituted in proteoliposomes with SERCA and spin-labeled PLB. We analyzed the change of PLB rotational mobility in response to varying DWORF concentration, to quantify competitive binding of DWORF and PLB. We determined that DWORF competes with PLB for binding to SERCA at low [Ca2+], although the measured affinity of DWORF for SERCA is an order of magnitude weaker than that of PLB for SERCA, indicating cooperativity. The sensitivity of EPR to structural dynamics, using stereospecifically attached spin labels, allows us to obtain new information needed to refine the molecular model for regulation of SERCA activity, as needed for development of novel therapeutic remedies against cardiac pathologies.


Assuntos
Proteínas de Ligação ao Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Espectroscopia de Ressonância de Spin Eletrônica/métodos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Marcadores de Spin , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Micropeptídeos
6.
Biochem Biophys Res Commun ; 685: 149136, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37907012

RESUMO

In cardiomyocytes, the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is a central component of intracellular Ca2+ regulation. Several heart diseases, including heart failure, are associated with reduced myocardial contraction due to SERCA2a downregulation. Therefore, the need for developing new drugs that could improve SERCA2a function is high. We have recently identified SERCA2a modulators (Compounds 6 and 8) from our screening campaigns and confirmed activation of biochemical SERCA2a ATPase activity and Ca2+ uptake activity. In this study, confocal microscopy and in-cell Ca2+ imaging were used to characterize the effects of these SERCA2a activators on Ca2+ regulation in mouse ventricular myocytes and endoplasmic reticulum (ER) Ca2+ uptake in a HEK293 cell expressing human SERCA2a. Analysis of cytosolic Ca2+ dynamics in cardiomyocytes revealed that both Compounds (6 and 8) increase the action potential-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load. While Compound 6 induced a negligible effect on Ca2+ transients invoked by the L-type Ca2+ channel (LTCC) current, Compound 8 increased Ca2+ transients during LTCC activation, suggesting an off-target protein interaction of Compound 8. Analysis of ER Ca2+ transport by human SERCA2a in HEK cells showed that only Compound 6 increased both ER Ca2+ uptake and ER Ca2+ load significantly, whereas Compound 8 had no effect on SERCA2a Ca2+ transport. This study revealed that Compound 6 exhibits promising characteristics that can improve intracellular Ca2+ dynamics by selectively enhancing SERCA2a Ca2+ uptake.


Assuntos
Sinalização do Cálcio , Cálcio , Camundongos , Humanos , Animais , Cálcio/metabolismo , Células HEK293 , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628726

RESUMO

Ca2+ leak from cardiomyocyte sarcoplasmic reticulum (SR) via hyperactive resting cardiac ryanodine receptor channels (RyR2) is pro-arrhythmic. An exogenous peptide (DPc10) binding promotes leaky RyR2 in cardiomyocytes and reports on that endogenous state. Conversely, calmodulin (CaM) binding inhibits RyR2 leak and low CaM affinity is diagnostic of leaky RyR2. These observations have led to designing a FRET biosensor for drug discovery targeting RyR2. We used FRET to clarify the molecular mechanism driving the DPc10-CaM interdependence when binding RyR2 in SR vesicles. We used donor-FKBP12.6 (D-FKBP) to resolve RyR2 binding of acceptor-CaM (A-CaM). In low nanomolar Ca2+, DPc10 decreased both FRETmax (under saturating [A-CaM]) and the CaM/RyR2 binding affinity. In micromolar Ca2+, DPc10 decreased FRETmax without affecting CaM/RyR2 binding affinity. This correlates with the analysis of fluorescence-lifetime-detected FRET, indicating that DPc10 lowers occupancy of the RyR2 CaM-binding sites in nanomolar (not micromolar) Ca2+ and lengthens D-FKBP/A-CaM distances independent of [Ca2+]. To observe DPc10/RyR2 binding, we used acceptor-DPc10 (A-DPc10). CaM weakens A-DPc10/RyR2 binding, with this effect being larger in micromolar versus nanomolar Ca2+. Moreover, A-DPc10/RyR2 binding is cooperative in a CaM- and FKBP-dependent manner, suggesting that both endogenous modulators promote concerted structural changes between RyR2 protomers for channel regulation. Aided by the analysis of cryo-EM structures, these insights inform further development of the DPc10-CaM paradigm for therapeutic discovery targeting RyR2.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Canal de Liberação de Cálcio do Receptor de Rianodina , Sítios de Ligação , Sistemas de Liberação de Medicamentos
8.
J Mol Cell Cardiol ; 168: 13-23, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35405106

RESUMO

A key therapeutic target for heart failure and arrhythmia is the deleterious leak through sarcoplasmic reticulum (SR) ryanodine receptor 2 (RyR2) calcium release channels. We have previously developed methods to detect the pathologically leaky state of RyR2 in adult cardiomyocytes by monitoring RyR2 binding to either calmodulin (CaM) or a biosensor peptide (DPc10). Here, we test whether these complementary binding measurements are effective as high-throughput screening (HTS) assays to discover small molecules that target leaky RyR2. Using FRET, we developed and validated HTS procedures under conditions that mimic a pathological state, to screen the library of 1280 pharmaceutically active compounds (LOPAC) for modulators of RyR2 in cardiac SR membrane preparations. Complementary FRET assays with acceptor-labeled CaM and DPc10 were used for Hit prioritization based on the opposing binding properties of CaM vs. DPc10. This approach narrowed the Hit list to one compound, Ro 90-7501, which altered FRET to suggest increased RyR2-CaM binding and decreased DPc10 binding. Follow-up studies revealed that Ro 90-7501 does not detrimentally affect myocyte Ca2+ transients. Moreover, Ro 90-7501 partially inhibits overall Ca2+ leak, as assessed by Ca2+ sparks in permeabilized rat cardiomyocytes. Together, these results demonstrate (1) the effectiveness of our HTS approach where two complementary assays synergize for Hit ranking and (2) a drug discovery process that combines high-throughput, high-precision in vitro structural assays with in situ myocyte assays of the pathologic RyR2 leak. These provide a drug discovery platform compatible with large-scale HTS campaigns, to identify agents that inhibit RyR2 for therapeutic development.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Descoberta de Drogas , Transferência Ressonante de Energia de Fluorescência/métodos , Miócitos Cardíacos/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
9.
J Biol Chem ; 296: 100412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581112

RESUMO

The Ca-ATPase isoform 2a (SERCA2a) pumps cytosolic Ca2+ into the sarcoplasmic reticulum (SR) of cardiac myocytes, enabling muscle relaxation during diastole. Abnormally high cytosolic [Ca2+] is a central factor in heart failure, suggesting that augmentation of SERCA2a Ca2+ transport activity could be a promising therapeutic approach. SERCA2a is inhibited by the protein phospholamban (PLB), and a novel transmembrane peptide, dwarf open reading frame (DWORF), is proposed to enhance SR Ca2+ uptake and myocyte contractility by displacing PLB from binding to SERCA2a. However, establishing DWORF's precise physiological role requires further investigation. In the present study, we developed cell-based FRET biosensor systems that can report on protein-protein interactions and structural changes in SERCA2a complexes with PLB and/or DWORF. To test the hypothesis that DWORF competes with PLB to occupy the SERCA2a-binding site, we transiently transfected DWORF into a stable HEK cell line expressing SERCA2a labeled with a FRET donor and PLB labeled with a FRET acceptor. We observed a significant decrease in FRET efficiency, consistent with a decrease in the fraction of SERCA2a bound to PLB. Surprisingly, we also found that DWORF also activates SERCA's enzymatic activity directly in the absence of PLB at subsaturating calcium levels. Using site-directed mutagenesis, we generated DWORF variants that do not activate SERCA, thus identifying residues P15 and W22 as necessary for functional SERCA2a-DWORF interactions. This work advances our mechanistic understanding of the regulation of SERCA2a by small transmembrane proteins and sets the stage for future therapeutic development in heart failure research.


Assuntos
Peptídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Células HEK293 , Insuficiência Cardíaca/metabolismo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia
10.
Proc Natl Acad Sci U S A ; 116(11): 4810-4815, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30792355

RESUMO

Ca2+ leak via ryanodine receptor type 2 (RyR2) can cause potentially fatal arrhythmias in a variety of heart diseases and has also been implicated in neurodegenerative and seizure disorders, making RyR2 an attractive therapeutic target for drug development. Here we synthesized and investigated the fungal natural product and known insect RyR antagonist (-)-verticilide and several congeners to determine their activity against mammalian RyR2. Although the cyclooligomeric depsipeptide natural product (-)-verticilide had no effect, its nonnatural enantiomer [ent-(+)-verticilide] significantly reduced RyR2-mediated spontaneous Ca2+ leak both in cardiomyocytes from wild-type mouse and from a gene-targeted mouse model of Ca2+ leak-induced arrhythmias (Casq2-/-). ent-(+)-verticilide selectively inhibited RyR2-mediated Ca2+ leak and exhibited higher potency and a distinct mechanism of action compared with the pan-RyR inhibitors dantrolene and tetracaine and the antiarrhythmic drug flecainide. ent-(+)-verticilide prevented arrhythmogenic membrane depolarizations in cardiomyocytes without significant effects on the cardiac action potential and attenuated ventricular arrhythmia in catecholamine-challenged Casq2-/- mice. These findings indicate that ent-(+)-verticilide is a potent and selective inhibitor of RyR2-mediated diastolic Ca2+ leak, making it a molecular tool to investigate the therapeutic potential of targeting RyR2 hyperactivity in heart and brain pathologies. The enantiomer-specific activity and straightforward chemical synthesis of (unnatural) ent-(+)-verticilide provides a compelling argument to prioritize ent-natural product synthesis. Despite their general absence in nature, the enantiomers of natural products may harbor unprecedented activity, thereby leading to new scaffolds for probe and therapeutic development.


Assuntos
Antiarrítmicos/química , Antiarrítmicos/farmacologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Depsipeptídeos/uso terapêutico , Dimerização , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Rianodina/metabolismo , Estereoisomerismo
11.
J Mol Cell Cardiol ; 161: 53-61, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371035

RESUMO

Persistent over-activation of CaMKII (Calcium/Calmodulin-dependent protein Kinase II) in the heart is implicated in arrhythmias, heart failure, pathological remodeling, and other cardiovascular diseases. Several post-translational modifications (PTMs)-including autophosphorylation, oxidation, S-nitrosylation, and O-GlcNAcylation-have been shown to trap CaMKII in an autonomously active state. The molecular mechanisms by which these PTMs regulate calmodulin (CaM) binding to CaMKIIδ-the primary cardiac isoform-has not been well-studied particularly in its native myocyte environment. Typically, CaMKII activates upon Ca-CaM binding during locally elevated [Ca]free and deactivates upon Ca-CaM dissociation when [Ca]free returns to basal levels. To assess the effects of CaMKIIδ PTMs on CaM binding, we developed a novel FRET (Förster resonance energy transfer) approach to directly measure CaM binding to and dissociation from CaMKIIδ in live cardiac myocytes. We demonstrate that autophosphorylation of CaMKIIδ increases affinity for CaM in its native environment and that this increase is dependent on [Ca]free. This leads to a 3-fold slowing of CaM dissociation from CaMKIIδ (time constant slows from ~0.5 to 1.5 s) when [Ca]free is reduced with physiological kinetics. Moreover, oxidation further slows CaM dissociation from CaMKIIδ T287D (phosphomimetic) upon rapid [Ca]free chelation and increases FRET between CaM and CaMKIIδ T287A (phosphoresistant). The CaM dissociation kinetics-measured here in myocytes-are similar to the interval between heartbeats, and integrative memory would be expected as a function of heart rate. Furthermore, the PTM-induced slowing of dissociation between beats would greatly promote persistent CaMKIIδ activity in the heart. Together, these findings suggest a significant role of PTM-induced changes in CaMKIIδ affinity for CaM and memory under physiological and pathophysiological processes in the heart.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/citologia , Masculino , Fosforilação , Processamento de Proteína Pós-Traducional , Coelhos
12.
Biophys J ; 118(5): 1090-1100, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32049056

RESUMO

Calmodulin (CaM) is proposed to modulate activity of the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel (ryanodine receptor, RyR1 isoform) via a mechanism dependent on the conformation of RyR1-bound CaM. However, the correlation between CaM structure and functional regulation of RyR in physiologically relevant conditions is largely unknown. Here, we have used time-resolved fluorescence resonance energy transfer (TR-FRET) to study structural changes in CaM that may play a role in the regulation of RyR1. We covalently labeled each lobe of CaM (N and C) with fluorescent probes and used intramolecular TR-FRET to assess interlobe distances when CaM is bound to RyR1 in SR membranes, purified RyR1, or a peptide corresponding to the CaM-binding domain of RyR (RyRp). TR-FRET resolved an equilibrium between two distinct structural states (conformations) of CaM, each characterized by an interlobe distance and Gaussian distribution width (disorder). In isolated CaM, at low Ca2+, the two conformations of CaM are resolved, centered at 5 nm (closed) and 7 nm (open). At high Ca2+, the equilibrium shifts to favor the open conformation. In the presence of RyRp at high Ca2+, the closed conformation shifts to a more compact conformation and is the major component. When CaM is bound to full-length RyR1, either purified or in SR membranes, strikingly different results were obtained: 1) the two conformations are resolved and more ordered, 2) the open state is the major component, and 3) Ca2+ stabilized the closed conformation by a factor of two. We conclude that the Ca2+-dependent structural distribution of CaM bound to RyR1 is distinct from that of CaM bound to RyRp. We propose that the function of RyR1 is tuned to the Ca2+-dependent structural dynamics of bound CaM.


Assuntos
Cálcio , Calmodulina , Cálcio/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo
13.
J Mol Cell Cardiol ; 138: 59-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751570

RESUMO

There is increasing momentum toward the development of gene therapy for heart failure (HF) that is defined by impaired calcium (Ca2+) transport and reduced contractility. We have used FRET (fluorescence resonance energy transfer) between fluorescently-tagged SERCA2a (the cardiac Ca2+ pump) and PLB (phospholamban, ventricular peptide inhibitor of SERCA) to test directly the effectiveness of loss-of-inhibition/gain-of-binding (LOI/GOB) PLB mutants (PLBM) that were engineered to compete with the binding of inhibitory wild-type PLB (PLBWT). Our therapeutic strategy is to relieve PLBWT inhibition of SERCA2a by using the reserve adrenergic capacity mediated by PLB to enhance cardiac contractility. Using a FRET assay, we determined that the combination of a LOI PLB mutation (L31A) and a GOB PLB mutation (I40A) results in a novel engineered LOI/GOB PLBM (L31A/I40A) that effectively competes with PLBWT binding to cardiac SERCA2a in HEK293-6E cells. We demonstrated that co-expression of PLBM enhances SERCA Ca-ATPase activity by increasing enzyme Ca2+ affinity (1/KCa) in PLBWT-inhibited HEK293 cell homogenates. For an initial assessment of PLBM physiological effectiveness, we used human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) from a healthy individual. In this system, we observed that adeno-associated virus 2 (rAAV2)-driven expression of PLBM enhances the amplitude of SR Ca2+ release and the rate of SR Ca2+ re-uptake. To assess therapeutic potential, we used a hiPSC-CM model of dilated cardiomyopathy (DCM) containing PLB mutation R14del, where we observed that rAAV2-driven expression of PLBM rescues arrhythmic Ca2+ transients and alleviates decreased Ca2+ transport. Thus, we propose that PLBM transgene expression is a promising gene therapy strategy that directly targets the underlying pathophysiology of abnormal Ca2+ transport and thus contractility in underlying systolic heart failure.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ligação Competitiva , Proteínas de Ligação ao Cálcio/metabolismo , Dependovirus/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função/genética , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
14.
J Mol Cell Cardiol ; 130: 96-106, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30928430

RESUMO

Calmodulin (CaM) is a Ca-binding protein that binds to, and can directly inhibit cardiac ryanodine receptor calcium release channels (RyR2). Animal studies have shown that RyR2 hyperphosphorylation reduces CaM binding to RyR2 in failing hearts, but data are lacking on how CaM regulates human RyR2 and how this regulation is affected by RyR2 phosphorylation. Physiological concentrations of CaM (100 nM) inhibited the diastolic activity of RyR2 isolated from failing human hearts by ~50% but had no effect on RyR2 from healthy human hearts. Using FRET between donor-FKBP12.6 and acceptor-CaM bound to RyR2, we determined that CaM binds to RyR2 from healthy human heart with a Kd = 121 ±â€¯14 nM. Ex-vivo phosphorylation/dephosphorylation experiments suggested that the divergent CaM regulation of healthy and failing human RyR2 was caused by differences in RyR2 phosphorylation by protein kinase A and Ca-CaM-dependent kinase II. Ca2+-spark measurements in murine cardiomyocytes harbouring RyR2 phosphomimetic or phosphoablated mutants at S2814 and S2808 suggest that phosphorylation of residues corresponding to either human RyR2-S2808 or S2814 is both necessary and sufficient for RyR2 regulation by CaM. Our results challenge the current concept that CaM universally functions as a canonical inhibitor of RyR2 across species. Rather, CaM's biological action on human RyR2 appears to be more nuanced, with inhibitory activity only on phosphorylated RyR2 channels, which occurs during exercise or in patients with heart failure.


Assuntos
Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica
15.
J Mol Cell Cardiol ; 119: 147-154, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752948

RESUMO

Dilated cardiomyopathy (DCM) can be caused by mutations in the cardiac protein phospholamban (PLN). We used CRISPR/Cas9 to insert the R9C PLN mutation at its endogenous locus into a human induced pluripotent stem cell (hiPSC) line from an individual with no cardiovascular disease. R9C PLN hiPSC-CMs display a blunted ß-agonist response and defective calcium handling. In 3D human engineered cardiac tissues (hECTs), a blunted lusitropic response to ß-adrenergic stimulation was observed with R9C PLN. hiPSC-CMs harboring the R9C PLN mutation showed activation of a hypertrophic phenotype, as evidenced by expression of hypertrophic markers and increased cell size and capacitance of cardiomyocytes. RNA-seq suggests that R9C PLN results in an altered metabolic state and profibrotic signaling, which was confirmed by gene expression analysis and picrosirius staining of R9C PLN hECTs. The expression of several miRNAs involved in fibrosis, hypertrophy, and cardiac metabolism were also perturbed in R9C PLN hiPSC-CMs. This study contributes to better understanding of the pathogenic mechanisms of the hereditary R9C PLN mutation in the context of human cardiomyocytes.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcriptoma , Agonistas Adrenérgicos beta/metabolismo , Análise de Variância , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Crescimento Celular , Linhagem Celular , Tamanho Celular , Fibrose , Edição de Genes , Humanos , MicroRNAs/metabolismo , Mutação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Engenharia Tecidual , Transfecção
16.
J Biol Chem ; 291(30): 15896-907, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226555

RESUMO

S100A1 has been suggested as a therapeutic agent to enhance myocyte Ca(2+) cycling in heart failure, but its molecular mode of action is poorly understood. Using FRET, we tested the hypothesis that S100A1 directly competes with calmodulin (CaM) for binding to intact, functional ryanodine receptors type I (RyR1) and II (RyR2) from skeletal and cardiac muscle, respectively. Our FRET readout provides an index of acceptor-labeled CaM binding near donor-labeled FKBP (FK506-binding protein 12.6) on the cytoplasmic domain of RyR in isolated sarcoplasmic reticulum vesicles. S100A1 (0.01-400 µm) partially inhibited FRET (i.e. CaM binding), with Ki > 10 µm, for both RyR1 and RyR2. The high [S100A1] required for partial effects on FRET indicates a lack of competition by S100A1 on CaM/RyR binding under normal physiological conditions. High-resolution analysis of time-resolved FRET detects two structural states of RyR-bound CaM, which respond to [Ca(2+)] and are isoform-specific. The distribution of these structural states was perturbed only by high micromolar [S100A1], which promoted a shift of bound CaM to a lower FRET orientation (without altering the amount of CaM bound to RyR). Thus, high micromolar S100A1 does alter the CaM/RyR interaction, without involving competition. Nevertheless, submicromolar S100A1 can alter RyR function, an effect that is influenced by both [Ca(2+)] and [CaM]. We conclude that CaM and S100A1 can concurrently bind to and functionally modulate RyR1 and RyR2, but this does not involve direct competition at the RyR CaM binding site.


Assuntos
Cálcio/química , Calmodulina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas S100/química , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Suínos
17.
J Mol Cell Cardiol ; 98: 62-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27318036

RESUMO

Diastolic calcium (Ca) leak via cardiac ryanodine receptors (RyR2) can cause arrhythmias and heart failure (HF). Ca/calmodulin (CaM)-dependent kinase II (CaMKII) is upregulated and more active in HF, promoting RyR2-mediated Ca leak by RyR2-Ser2814 phosphorylation. Here, we tested a mechanistic hypothesis that RyR2 phosphorylation by CaMKII increases Ca leak by promoting a pathological RyR2 conformation with reduced CaM affinity. Acute CaMKII activation in wild-type RyR2, and phosphomimetic RyR2-S2814D (vs. non-phosphorylatable RyR2-S2814A) knock-in mouse myocytes increased SR Ca leak, reduced CaM-RyR2 affinity, and caused a pathological shift in RyR2 conformation (detected via increased access of the RyR2 structural peptide DPc10). This same trio of effects was seen in myocytes from rabbits with pressure/volume-overload induced HF. Excess CaM quieted leak and restored control conformation, consistent with negative allosteric coupling between CaM affinity and DPc10 accessible conformation. Dantrolene (DAN) also restored CaM affinity, reduced DPc10 access, and suppressed RyR2-mediated Ca leak and ventricular tachycardia in RyR2-S2814D mice. We propose that a common pathological RyR2 conformational state (low CaM affinity, high DPc10 access, and elevated leak) may be caused by CaMKII-dependent phosphorylation, oxidation, and HF. Moreover, DAN (or excess CaM) can shift this pathological gating state back to the normal physiological conformation, a potentially important therapeutic approach.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Conformação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Dantroleno/farmacologia , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ativação do Canal Iônico , Camundongos , Miócitos Cardíacos/metabolismo , Permeabilidade , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Coelhos , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Proteínas de Ligação a Tacrolimo/metabolismo
18.
Circ Res ; 114(2): 295-306, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24186966

RESUMO

RATIONALE: Calmodulin (CaM) associates with cardiac ryanodine receptor type-2 (RyR2) as an important regulator. Defective CaM-RyR2 interaction may occur in heart failure, cardiac hypertrophy, and catecholaminergic polymorphic ventricular tachycardia. However, the in situ binding properties for CaM-RyR2 are unknown. OBJECTIVE: We sought to measure the in situ binding affinity and kinetics for CaM-RyR2 in normal and heart failure ventricular myocytes, estimate the percentage of Z-line-localized CaM that is RyR2-bound, and test cellular function of defective CaM-RyR2 interaction. METHODS AND RESULTS: Using fluorescence resonance energy transfer in permeabilized myocytes, we specifically resolved RyR2-bound CaM from other potential binding targets and measured CaM-RyR2 binding affinity in situ (Kd=10-20 nmol/L). Using RyR2(ADA/+) knock-in mice, in which half of the CaM-RyR2 binding is suppressed, we estimated that >90% of Z-line CaM is RyR2-bound. Functional tests indicated a higher propensity for Ca2+ wave production and stress-induced ventricular arrhythmia in RyR2(ADA/+) mice. In a post-myocardial infarction rat heart failure model, we detected a decrease in the CaM-RyR2 binding affinity (Kd≈51 nmol/L; ≈3-fold increase) and unaltered RyR2 affinity for the FK506-binding protein FKBP12.6 (Kd~0.8 nmol/L). CONCLUSIONS: CaM binds to RyR2 with high affinity in cardiac myocytes. Physiologically, CaM is bound to >70% of RyR2 monomers and inhibits sarcoplasmic reticulum Ca2+ release. RyR2 is the major binding site for CaM along the Z-line in cardiomyocytes, and dissociating CaM from RyR2 can cause severe ventricular arrhythmia. In heart failure, RyR2 shows decreased CaM affinity, but unaltered FKBP 12.6 affinity.


Assuntos
Arritmias Cardíacas/etiologia , Calmodulina/metabolismo , Insuficiência Cardíaca/complicações , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Cinética , Camundongos , Camundongos Transgênicos , Ligação Proteica , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
19.
Circ Res ; 114(7): 1114-24, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24563457

RESUMO

RATIONALE: Calmodulin (CaM) mutations are associated with an autosomal dominant syndrome of ventricular arrhythmia and sudden death that can present with divergent clinical features of catecholaminergic polymorphic ventricular tachycardia (CPVT) or long QT syndrome (LQTS). CaM binds to and inhibits ryanodine receptor (RyR2) Ca release channels in the heart, but whether arrhythmogenic CaM mutants alter RyR2 function is not known. OBJECTIVE: To gain mechanistic insight into how human CaM mutations affect RyR2 Ca channels. METHODS AND RESULTS: We studied recombinant CaM mutants associated with CPVT (N54I and N98S) or LQTS (D96V, D130G, and F142L). As a group, all LQTS-associated CaM mutants (LQTS-CaMs) exhibited reduced Ca affinity, whereas CPVT-associated CaM mutants (CPVT-CaMs) had either normal or modestly lower Ca affinity. In permeabilized ventricular myocytes, CPVT-CaMs at a physiological intracellular concentration (100 nmol/L) promoted significantly higher spontaneous Ca wave and spark activity, a typical cellular phenotype of CPVT. Compared with wild-type CaM, CPVT-CaMs caused greater RyR2 single-channel open probability and showed enhanced binding affinity to RyR2. Even a 1:8 mixture of CPVT-CaM:wild-type-CaM activated Ca waves, demonstrating functional dominance. In contrast, LQTS-CaMs did not promote Ca waves and exhibited either normal regulation of RyR2 single channels (D96V) or lower RyR2-binding affinity (D130G and F142L). None of the CaM mutants altered Ca/CaM binding to CaM-kinase II. CONCLUSIONS: A small proportion of CPVT-CaM is sufficient to evoke arrhythmogenic Ca disturbances, whereas LQTS-CaMs do not. Our findings explain the clinical presentation and autosomal dominant inheritance of CPVT-CaM mutations and suggest that RyR2 interactions are unlikely to explain arrhythmogenicity of LQTS-CaM mutations.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Calmodulina/genética , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
20.
J Mol Cell Cardiol ; 85: 240-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26092277

RESUMO

Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in heart failure (HF) and arrhythmias. Altered RyR2 domain-domain interaction (domain unzipping) and calmodulin (CaM) binding affinity are allosterically coupled indices of RyR2 conformation. In HF RyR2 exhibits reduced CaM binding, increased domain unzipping and greater SR Ca leak, and dantrolene can reverse these changes. However, effects of oxidative stress on RyR2 conformation and leak in myocytes are poorly understood. We used fluorescent CaM, FKBP12.6, and domain-peptide biosensor (F-DPc10) to measure, directly in cardiac myocytes, (1) RyR2 activation by hydrogen peroxide (H2O2)-induced oxidation, (2) RyR2 conformation change caused by oxidation, (3) CaM-RyR2 and FK506-binding protein (FKBP12.6)-RyR2 interaction upon oxidation, and (4) whether dantrolene affects 1-3. H2O2 was used to mimic oxidative stress. H2O2 significantly increased the frequency of Ca(2+) sparks and spontaneous Ca(2+) waves, and dantrolene almost completely blocked these effects. H2O2 pretreatment significantly reduced CaM-RyR2 binding, but had no effect on FKBP12.6-RyR2 binding. Dantrolene restored CaM-RyR2 binding but had no effect on intracellular and RyR2 oxidation levels. H2O2 also accelerated F-DPc10-RyR2 association while dantrolene slowed it. Thus, H2O2 causes conformational changes (sensed by CaM and DPc10 binding) associated with Ca leak, and dantrolene reverses these RyR2 effects. In conclusion, in cardiomyocytes, H2O2 treatment markedly reduces the CaM-RyR2 affinity, has no effect on FKBP12.6-RyR2 affinity, and causes domain unzipping. Dantrolene can correct domain unzipping, restore CaM-RyR2 affinity, and quiet pathological RyR2 channel gating. F-DPc10 and CaM are useful biosensors of a pathophysiological RyR2 state.


Assuntos
Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Cinética , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo , Ligação Proteica , Conformação Proteica , Ratos , Proteínas de Ligação a Tacrolimo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA