Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Liver Int ; 42(1): 233-248, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478594

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a form of primary liver cancer with limited therapeutic options. Recently, cancer stem cells (CSCs) have been proposed as a driving force of tumour initiation and dissemination, thus representing a crucial therapeutic target. The protease inhibitor SerpinB3 (SB3) has been identified in several malignancies including hepatocellular carcinoma. SB3 has been involved in the early events of hepatocarcinogenesis and is highly expressed in hepatic progenitor cells and in a mouse model of liver progenitor cell activation. However, only limited information on the possible role of SB3 in CCA stem-like compartment is available. METHODS: Enrichment of CCA stem-like subset was performed by sphere culture (SPH) in CCA cell lines (CCLP1, HUCCT1, MTCHC01 and SG231). Quantitative RT-PCR and Western blotting were used to detect SB3 in both SPH and parental monolayer (MON) cells. Acquired CSC-like features were analysed using an endogenous and a paracrine in vitro model, with transfection of SB3 gene or addition of recombinant SB3 to cell medium respectively. SB3 tumorigenic role was explored in an in vivo mouse model of CCA by subcutaneous injection of SB3-transfected MON (MONSB3+ ) cells in immune-deficient NOD-SCID/IL2Rgnull  (NSG) mice. SB3 expression in human CCA sections was investigated by immunohistochemistry. Overall survival (OS) and time to recurrence (TTR) analyses were carried out from a transcriptome database of 104 CCA patients. RESULTS: SB3, barely detected in parental MON cells, was overexpressed in the same CCA cells grown as 3D SPH. Notably, MONSB3+ showed significant overexpression of genes associated with stemness (CD24, CD44, CD133), pluripotency (c-MYC, NOTCH1, STAT3, YAP, NANOG, BMI1, KLF4, OCT4, SOX2), epithelial mesenchymal transition (ß-catenin, SLUG) and extracellular matrix remodelling (MMP1, MMP7, MMP9, ADAM9, ADAM10, ADAM17, ITGB3). SB3-overexpressing cells showed superior spherogenic capacity and invasion ability compared to control. Importantly, MONSB3+ exhibited activation of MAP kinases (ERK1/2, p38, JNK) as well as phosphorylation of NFκB (p65) in addition to up-regulation of the proto-oncogene ß-catenin. All these effects were reversed after transient silencing of SB3. According to the in vitro finding, MONSB3+ cells retained high tumorigenic potential in NSG mice. SB3 overexpression was observed in human CCA tissues and analysis of OS as well as TTR indicated a worse prognosis in SB3+ CCA patients. CONCLUSION: These findings indicate a SB3 role in mediating malignant phenotype of CCA and identify a new therapeutic target.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , Proteínas ADAM/metabolismo , Animais , Antígenos de Neoplasias , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases , Serpinas
2.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628152

RESUMO

Iron is necessary for essential processes in every cell of the body, but the erythropoietic compartment is a privileged iron consumer. In fact, as a necessary component of hemoglobin and myoglobin, iron assures oxygen distribution; therefore, a considerable amount of iron is required daily for hemoglobin synthesis and erythroid cell proliferation. Therefore, a tight link exists between iron metabolism and erythropoiesis. The liver-derived hormone hepcidin, which controls iron homeostasis via its interaction with the iron exporter ferroportin, coordinates erythropoietic activity and iron homeostasis. When erythropoiesis is enhanced, iron availability to the erythron is mainly ensured by inhibiting hepcidin expression, thereby increasing ferroportin-mediated iron export from both duodenal absorptive cells and reticuloendothelial cells that process old and/or damaged red blood cells. Erythroferrone, a factor produced and secreted by erythroid precursors in response to erythropoietin, has been identified and characterized as a suppressor of hepcidin synthesis to allow iron mobilization and facilitate erythropoiesis.


Assuntos
Eritropoese , Hepcidinas , Eritropoese/fisiologia , Hemoglobinas , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Mineração
3.
J Hepatol ; 74(6): 1373-1385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484774

RESUMO

BACKGROUND & AIMS: Little is known about the metabolic regulation of cancer stem cells (CSCs) in cholangiocarcinoma (CCA). We analyzed whether mitochondrial-dependent metabolism and related signaling pathways contribute to stemness in CCA. METHODS: The stem-like subset was enriched by sphere culture (SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and compared to cells cultured in monolayer. Extracellular flux analysis was examined by Seahorse technology and high-resolution respirometry. In patients with CCA, expression of factors related to mitochondrial metabolism was analyzed for possible correlation with clinical parameters. RESULTS: Metabolic analyses revealed a more efficient respiratory phenotype in CCA-SPH than in monolayers, due to mitochondrial oxidative phosphorylation. CCA-SPH showed high mitochondrial membrane potential and elevated mitochondrial mass, and over-expressed peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis. Targeting mitochondrial complex I in CCA-SPH using metformin, or PGC-1α silencing or pharmacologic inhibition (SR-18292), impaired spherogenicity and expression of markers related to the CSC phenotype, pluripotency, and epithelial-mesenchymal transition. In mice with tumor xenografts generated by injection of CCA-SPH, administration of metformin or SR-18292 significantly reduced tumor growth and determined a phenotype more similar to tumors originated from cells grown in monolayer. In patients with CCA, expression of PGC-1α correlated with expression of mitochondrial complex II and of stem-like genes. Patients with higher PGC-1α expression by immunostaining had lower overall and progression-free survival, increased angioinvasion and faster recurrence. In GSEA analysis, patients with CCA and high levels of mitochondrial complex II had shorter overall survival and time to recurrence. CONCLUSIONS: The CCA stem-subset has a more efficient respiratory phenotype and depends on mitochondrial oxidative metabolism and PGC-1α to maintain CSC features. LAY SUMMARY: The growth of many cancers is sustained by a specific type of cells with more embryonic characteristics, termed 'cancer stem cells'. These cells have been described in cholangiocarcinoma, a type of liver cancer with poor prognosis and limited therapeutic approaches. We demonstrate that cancer stem cells in cholangiocarcinoma have different metabolic features, and use mitochondria, an organelle located within the cells, as the major source of energy. We also identify PGC-1α, a molecule which regulates the biology of mitochondria, as a possible new target to be explored for developing new treatments for cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Fenótipo , Transdução de Sinais/genética , Animais , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Complexo II de Transporte de Elétrons/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Inativação Gênica , Humanos , Indóis/administração & dosagem , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/antagonistas & inibidores , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Intervalo Livre de Progressão , Propanóis/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transfecção , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804198

RESUMO

Body iron levels are regulated by hepcidin, a liver-derived peptide that exerts its function by controlling the presence of ferroportin (FPN), the sole cellular iron exporter, on the cell surface. Hepcidin binding leads to FPN internalization and degradation, thereby inhibiting iron release, in particular from iron-absorbing duodenal cells and macrophages involved in iron recycling. Disruption in this regulatory mechanism results in a variety of disorders associated with iron-deficiency or overload. In recent years, increasing evidence has emerged to indicate that, in addition to its role in systemic iron metabolism, FPN may play an important function in local iron control, such that its dysregulation may lead to tissue damage despite unaltered systemic iron homeostasis. In this review, we focus on recent discoveries to discuss the role of FPN-mediated iron export in the microenvironment under both physiological and pathological conditions.


Assuntos
Proteínas de Transporte de Cátions/genética , Microambiente Celular/genética , Hepcidinas/genética , Ferro/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/metabolismo , Homeostase/genética , Humanos , Fígado/metabolismo , Macrófagos/metabolismo , Ligação Proteica
5.
Am J Pathol ; 189(10): 2090-2101, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351075

RESUMO

Fibroblast growth factor receptor 2 (FGFR2) might have an important role in the pathogenesis and biology of cholangiocarcinoma (CCA). We examined FGFR expression in CCA tumor specimens obtained from patients and CCA cell lines, and then determined the effects of the novel FGFR inhibitor, derazantinib (DZB; formally, ARQ 087), which is currently in clinical phase 2 trials for intrahepatic CCA. DZB inhibited the growth of CCA cell lines in a dose-dependent manner, and extracellular signal-regulated kinase 1/2 and AKT. It also activated apoptotic and cell growth arrest signaling. DZB reduced the in vitro invasiveness and the expression of key epithelial-mesenchymal transition genes. The in vitro data correlated with the expression of FGFRs in human CCA specimens by immunohistochemistry (FGFR1, 30% positive; and FGFR2, 65% positive) and the CCA cell lines assayed by Western blot analysis. These correlated in vitro studies suggest that FGFR may play an important role in the pathogenesis and biology of CCA. Our findings support the notion that FGFR inhibitors, like DZB, should be further evaluated at the clinical stage as targeted therapy for CCA treatment.


Assuntos
Compostos de Anilina/farmacologia , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas
6.
J Hepatol ; 66(1): 102-115, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27593106

RESUMO

BACKGROUND & AIMS: A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. METHODS: CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14+ with CCA-sphere conditioned medium. RESULTS: CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p=0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14+ macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163+ set was found in the tumor front of human CCA specimens (n=23) and correlated with a high level of serum cancer antigen 19.9 (n=17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n=12). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n=104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. CONCLUSION: CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY: Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Macrófagos , Células-Tronco Neoplásicas/fisiologia , Animais , Antígenos CD/análise , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinogênese , Carcinógenos , Colangiocarcinoma/imunologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos , Interleucinas/análise , Macrófagos/metabolismo , Macrófagos/patologia , Glicoproteínas de Membrana/análise , Camundongos
7.
Metabolites ; 14(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668356

RESUMO

Iron is an essential nutrient for growth among all branches of life, but while iron is among the most common elements, bioavailable iron is a relatively scarce nutrient. Since iron is fundamental for several biological processes, iron deficiency can be deleterious. On the other hand, excess iron may lead to cell and tissue damage. Consequently, iron balance is strictly regulated. As iron excretion is not physiologically controlled, systemic iron homeostasis is maintained at the level of absorption, which is mainly influenced by the amount of iron stores and the level of erythropoietic activity, the major iron consumer. Here, we outline recent advances that increased our understanding of the molecular aspects of iron absorption. Moreover, we examine the impact of these recent insights on dietary strategies for maintaining iron balance.

8.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36612000

RESUMO

Primary liver cancer (PLC) is one of the most devastating cancers worldwide. Extensive phenotypical and functional heterogeneity is a cardinal hallmark of cancer, including PLC, and is related to the cancer stem cell (CSC) concept. CSCs are responsible for tumor growth, progression, relapse and resistance to conventional therapies. Metabolic reprogramming represents an emerging hallmark of cancer. Cancer cells, including CSCs, are very plastic and possess the dynamic ability to constantly shift between different metabolic states depending on various intrinsic and extrinsic stimuli, therefore amplifying the complexity of understanding tumor heterogeneity. Besides the well-known Warburg effect, several other metabolic pathways including lipids and iron metabolism are altered in PLC. An increasing number of studies supports the role of the surrounding tumor microenvironment (TME) in the metabolic control of liver CSCs. In this review, we discuss the complex metabolic rewiring affecting liver cancer cells and, in particular, liver CSCs. Moreover, we highlight the role of TME cellular and noncellular components in regulating liver CSC metabolic plasticity. Deciphering the specific mechanisms regulating liver CSC-TME metabolic interplay could be very helpful with respect to the development of more effective and innovative combinatorial therapies for PLC treatment.

9.
Front Oncol ; 9: 149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941302

RESUMO

Cancer stem cells (CSC) which have been identified in several tumors, including liver cancer, represent a particular subpopulation of tumor cells characterized by properties similar to those of adult stem cells. Importantly, CSC are resistant to standard therapies, thereby leading to metastatic dissemination and tumor relapse. Given the increasing evidence that iron homeostasis is deregulated in cancer, here we describe the iron homeostasis alterations in cancer cells, particularly in liver CSC. We also discuss two paradoxically opposite iron manipulation-strategies for tumor therapy based either on iron chelation or iron overload-mediated oxidant production leading to ferroptosis. A better understanding of iron metabolism modifications occurring in hepatic tumors and particularly in liver CSC cells may offer new therapeutic options for this cancer, which is characterized by increasing incidence and unfavorable prognosis.

10.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2246-2256, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059778

RESUMO

Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with ß-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with ß-arrestin 2.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Receptores CXCR/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Movimento Celular , Sobrevivência Celular , Quimiocina CXCL12/metabolismo , Colangiocarcinoma/metabolismo , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/genética , Células Tumorais Cultivadas , beta-Arrestina 2/metabolismo
12.
Oncotarget ; 8(4): 7094-7115, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-27738343

RESUMO

Poor prognosis and high recurrence remain leading causes of primary liver cancer-associated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy.


Assuntos
Neoplasias Hepáticas/patologia , Células Neoplásicas Circulantes/patologia , Plasticidade Celular , Transição Epitelial-Mesenquimal , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia , Prognóstico
13.
Sci Rep ; 7(1): 17667, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247214

RESUMO

Cholangiocarcinoma (CCA) is a devastating liver tumour arising from malignant transformation of bile duct epithelial cells. Cancer stem cells (CSC) are a subset of tumour cells endowed with stem-like properties, which play a role in tumour initiation, recurrence and metastasis. In appropriate conditions, CSC form 3D spheres (SPH), which retain stem-like tumour-initiating features. Here, we found different expression of iron proteins indicating increased iron content, oxidative stress and higher expression of CSC markers in CCA-SPH compared to tumour cells growing as monolayers. Exposure to the iron chelator desferrioxamine decreased SPH forming efficiency and the expression of CSC markers and stem-like genes, whereas iron had an opposite effect. Microarray profiles in CCA samples (n = 104) showed decreased H ferritin, hepcidin and ferroportin expression in tumours respect to surrounding liver, whereas transferrin receptor was up-regulated. Moreover, we found a trend toward poorer outcome in CCA patients with elevated expression of ferritin and hepcidin, two major proteins of iron metabolism. These findings, which represent the first evidence of a role for iron in the stem cell compartment as a novel metabolic factor involved in CCA growth, may have implications for a better therapeutic approach.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Ferro/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Colangiocarcinoma/patologia , Ferritinas/metabolismo , Hepcidinas/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/fisiologia , Receptores da Transferrina/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA