Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.665
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37075754

RESUMO

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Assuntos
Centrômero , Técnicas Genéticas , Humanos , Aneuploidia , Centrômero/genética , Deleção Cromossômica , Neoplasias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
Immunity ; 55(12): 2318-2335.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36379210

RESUMO

Microglia utilize their phagocytic activity to prune redundant synapses and refine neural circuits during precise developmental periods. However, the neuronal signals that control this phagocytic clockwork remain largely undefined. Here, we show that neuronal signal-regulatory protein alpha (SIRPα) is a permissive cue for microglial phagocytosis in the developing murine retina. Removal of neuronal, but not microglial, SIRPα reduced microglial phagocytosis, increased synpase numbers, and impaired circuit function. Conversely, prolonging neuronal SIRPα expression extended developmental microglial phagocytosis. These outcomes depended on the interaction of presynaptic SIRPα with postsynaptic CD47. Global CD47 deficiency modestly increased microglial phagocytosis, while CD47 overexpression reduced it. This effect was rescued by coexpression of neuronal SIRPα or codeletion of neuronal SIRPα and CD47. These data indicate that neuronal SIRPα regulates microglial phagocytosis by limiting microglial SIRPα access to neuronal CD47. This discovery may aid our understanding of synapse loss in neurological diseases.


Assuntos
Antígeno CD47 , Receptores Imunológicos , Camundongos , Animais , Antígeno CD47/metabolismo , Receptores Imunológicos/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Retina , Antígenos de Diferenciação/metabolismo
3.
Nature ; 630(8017): 736-743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839956

RESUMO

Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.


Assuntos
Antígeno B7-H1 , Proteínas Fúngicas , Fagossomos , Proteínas Ribossômicas , Saccharomyces cerevisiae , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Interleucina-10/metabolismo , Ligantes , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Fagocitose , Fagossomos/química , Fagossomos/metabolismo , Fagossomos/microbiologia , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Staphylococcus aureus/metabolismo
4.
Genes Dev ; 34(19-20): 1392-1405, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883681

RESUMO

TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.


Assuntos
Sítios Frágeis do Cromossomo/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/patologia , Animais , Linhagem Celular , Células Cultivadas , Reparo do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Fibroblastos , Humanos , Camundongos , Recombinases/genética , Recombinases/metabolismo
5.
Cell ; 151(4): 709-723, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23141534

RESUMO

Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.


Assuntos
Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Espinhas Dendríticas/metabolismo , Sinapses/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Hipocampo/embriologia , Hipocampo/metabolismo , Humanos , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(12): e2309232121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466844

RESUMO

Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.


Assuntos
Mapeamento Encefálico , Aprendizado Social , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Cognição , Descanso , Imageamento por Ressonância Magnética/métodos
7.
PLoS Pathog ; 20(5): e1012223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739675

RESUMO

Natural killer-like B (NKB) cells are unique innate immune cells expressing both natural killer (NK) and B cell receptors. As first responders to infection, they secrete IL-18 to induce a critical cascade of innate and adaptive immune cell infiltration and activation. However, limited research exists on the role of NKB cells in homeostasis and infection, largely due to incomplete and erroneous evaluations. To fill this knowledge gap, we investigated the expression of signaling and trafficking proteins, and the in situ localization and transcriptome of naïve NKB cells compared to conventionally-defined NK and B cells, as well as modulations of these cells in SIV infection. Intracellular signaling proteins and trafficking markers were expressed differentially on naïve NKB cells, with high expression of CD62L and Syk, and low expression of CD69, α4ß7, FcRg, Zap70, and CD3z, findings which were more similar to B cells than NK cells. CD20+NKG2a/c+ NKB cells were identified in spleen, mesenteric lymph nodes (MLN), colon, jejunum, and liver of naïve rhesus macaques (RM) via tissue imaging, with NKB cell counts concentrated in spleen and MLN. For the first time, single cell RNA sequencing (scRNAseq), including B cell receptor (BCR) sequencing, of sorted NKB cells confirmed that NKB cells are unique. Transcriptomic analysis of naïve splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. While only 15% of sorted NKB cells showed transcript expression of both KLRC1 (NKG2A) and MS4A1 (CD20) genes, only 5% of cells expressed KLRC1, MS4A1, and IgH/IgL transcripts. We observed expanded NKB frequencies in RM gut and buccal mucosa as early as 14 and 35 days post-SIV infection, respectively. Further, mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes, respectively. Our studies indicate that NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings that could only be resolved using genomic techniques. Although NKB cells were clearly elevated during SIV infection and associated with inflammatory changes during infection, further interrogation is necessary to acurately identify the true phenotype and significance of NKB cells in infection and inflammation.


Assuntos
Imunidade Inata , Células Matadoras Naturais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Células Matadoras Naturais/imunologia , Linfócitos B/imunologia
8.
J Immunol ; 212(11): 1621-1625, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619284

RESUMO

Humans experience frequent respiratory infections. Immunology and vaccinology studies in mice are typically performed in naive specific pathogen-free animals responding to their very first respiratory challenge. We found that the first respiratory infection induces lifelong enlargement of the lung-draining mediastinal lymph nodes (medLNs). Furthermore, infection-experienced medLNs supported better naive T cell surveillance and effector responses to new unrelated infections that exhibited more biased accumulation and memory establishment within the lung. Moreover, we observed that weight loss induced by influenza infection was substantially reduced in mice that had recovered from a previous unrelated respiratory viral challenge. These data show that the lack of infectious history and corresponding medLN hypoplasia in specific pathogen-free mice alter their immune response to lung infections. Preclinical vaccination and immunology studies should consider the previous infectious experience of the model organism.


Assuntos
Pulmão , Linfonodos , Infecções por Orthomyxoviridae , Animais , Camundongos , Linfonodos/imunologia , Infecções por Orthomyxoviridae/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Memória Imunológica/imunologia , Mediastino , Infecções Respiratórias/imunologia
9.
Proc Natl Acad Sci U S A ; 120(47): e2300733120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956299

RESUMO

In multiple sclerosis (MS), pathogenic T cell responses are known to be important drivers of autoimmune inflammation. However, increasing evidence suggests an additional role for B cells, which may contribute to pathogenesis via antigen presentation and production of proinflammatory cytokines. However, these B cell effector functions are not featured well in classical experimental autoimmune encephalomyelitis (EAE) mouse models. Here, we compared properties of myelin oligodendrocyte glycoprotein (MOG)-specific and polyclonal B cells and developed an adjuvant-free cotransfer EAE mouse model, where highly activated, MOG-specific induced germinal center B cells provide the critical stimulus for disease development. We could show that high levels of MOG-specific immunoglobulin G (IgGs) are not required for EAE development, suggesting that antigen presentation and activation of cognate T cells by B cells may be important for pathogenesis. As our model allows for B cell manipulation prior to transfer, we found that overexpression of the proinflammatory cytokine interleukin (IL)-6 by MOG-specific B cells leads to an accelerated EAE onset accompanied by activation/expansion of the myeloid compartment rather than a changed T cell response. Accordingly, knocking out IL-6 or tumor necrosis factor α in MOG-specific B cells via CRISPR-Cas9 did not affect activation of pathogenic T cells. In summary, we generated a tool to dissect pathogenic B cell effector function in EAE development, which should improve our understanding of pathogenic processes in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Citocinas , Autoimunidade , Glicoproteína Mielina-Oligodendrócito , Interleucina-6 , Camundongos Endogâmicos C57BL
10.
Proc Natl Acad Sci U S A ; 120(39): e2303752120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722039

RESUMO

Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.


Assuntos
Isocromossomos , Humanos , Centrômero , Aberrações Cromossômicas , Citogenética , Replicação do DNA , Instabilidade Genômica
11.
N Engl J Med ; 387(13): 1161-1172, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36170500

RESUMO

BACKGROUND: Currently available semiautomated insulin-delivery systems require individualized insulin regimens for the initialization of therapy and meal doses based on carbohydrate counting for routine operation. In contrast, the bionic pancreas is initialized only on the basis of body weight, makes all dose decisions and delivers insulin autonomously, and uses meal announcements without carbohydrate counting. METHODS: In this 13-week, multicenter, randomized trial, we randomly assigned in a 2:1 ratio persons at least 6 years of age with type 1 diabetes either to receive bionic pancreas treatment with insulin aspart or insulin lispro or to receive standard care (defined as any insulin-delivery method with unblinded, real-time continuous glucose monitoring). The primary outcome was the glycated hemoglobin level at 13 weeks. The key secondary outcome was the percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter; the prespecified noninferiority limit for this outcome was 1 percentage point. Safety was also assessed. RESULTS: A total of 219 participants 6 to 79 years of age were assigned to the bionic-pancreas group, and 107 to the standard-care group. The glycated hemoglobin level decreased from 7.9% to 7.3% in the bionic-pancreas group and did not change (was at 7.7% at both time points) in the standard-care group (mean adjusted difference at 13 weeks, -0.5 percentage points; 95% confidence interval [CI], -0.6 to -0.3; P<0.001). The percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter did not differ significantly between the two groups (13-week adjusted difference, 0.0 percentage points; 95% CI, -0.1 to 0.04; P<0.001 for noninferiority). The rate of severe hypoglycemia was 17.7 events per 100 participant-years in the bionic-pancreas group and 10.8 events per 100 participant-years in the standard-care group (P = 0.39). No episodes of diabetic ketoacidosis occurred in either group. CONCLUSIONS: In this 13-week, randomized trial involving adults and children with type 1 diabetes, use of a bionic pancreas was associated with a greater reduction than standard care in the glycated hemoglobin level. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT04200313.).


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemiantes , Insulina Aspart , Sistemas de Infusão de Insulina , Insulina Lispro , Adolescente , Adulto , Idoso , Biônica/instrumentação , Glicemia/análise , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Criança , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/efeitos adversos , Insulina/uso terapêutico , Insulina Aspart/administração & dosagem , Insulina Aspart/efeitos adversos , Insulina Aspart/uso terapêutico , Sistemas de Infusão de Insulina/efeitos adversos , Insulina Lispro/administração & dosagem , Insulina Lispro/efeitos adversos , Insulina Lispro/uso terapêutico , Pessoa de Meia-Idade , Adulto Jovem
12.
Plant Physiol ; 195(2): 1229-1255, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38366651

RESUMO

Trees with weeping shoot architectures are valued for their beauty and are a resource for understanding how plants regulate posture control. The peach (Prunus persica) weeping phenotype, which has elliptical downward arching branches, is caused by a homozygous mutation in the WEEP gene. Little is known about the function of WEEP despite its high conservation throughout Plantae. Here, we present the results of anatomical, biochemical, biomechanical, physiological, and molecular experiments that provide insight into WEEP function. Our data suggest that weeping peach trees do not have defects in branch structure. Rather, transcriptomes from the adaxial (upper) and abaxial (lower) sides of standard and weeping branch shoot tips revealed flipped expression patterns for genes associated with early auxin response, tissue patterning, cell elongation, and tension wood development. This suggests that WEEP promotes polar auxin transport toward the lower side during shoot gravitropic response, leading to cell elongation and tension wood development. In addition, weeping peach trees exhibited steeper root systems and faster lateral root gravitropic response. This suggests that WEEP moderates root gravitropism and is essential to establishing the set-point angle of lateral roots from the gravity vector. Additionally, size exclusion chromatography indicated that WEEP proteins self-oligomerize, like other proteins with sterile alpha motif domains. Collectively, our results from weeping peach provide insight into polar auxin transport mechanisms associated with gravitropism and lateral shoot and root orientation.


Assuntos
Gravitropismo , Ácidos Indolacéticos , Proteínas de Plantas , Prunus persica , Ácidos Indolacéticos/metabolismo , Gravitropismo/fisiologia , Gravitropismo/genética , Prunus persica/genética , Prunus persica/fisiologia , Prunus persica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Gravitação , Árvores/fisiologia , Árvores/genética
13.
Proc Natl Acad Sci U S A ; 119(47): e2212431119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36399550

RESUMO

A multimethod archaeometry study (zooarchaeological, isotopic, ancient DNA, paleobotanical, and radiocarbon dating) of a spider monkey sacrificed in the ceremonial center of Teotihuacan, Mexico (1 to 550 CE) is interpreted as a diplomatic gift exchange with neighboring Maya. Not only does this spider monkey provide the earliest known instance of primate translocation and captivity in Mesoamerica, it helps date incipient modes of interregional diplomacy between two major powers during Early Classic Mesoamerica: Teotihuacan and the Maya. Details of human-primate interaction include age at capture and transport (before ∼3 y of age), captive duration (over 2 y), anthropogenic diet (staple was maize, though secondary resources unique to anthropogenic diet including arrowroot and chili pepper were also found), context of sacrifice (tethered and associated with complete golden eagle and an array of other statecrafts), and general site context (including presence of Maya vessels and Maya-style murals). The timing of the spider monkey's sacrifice (250 to 300 CE) and its life history suggest a reconsideration of epigraphically attested militaristic involvement of Teotihuacan at certain Maya sites. We propose that a period of more multilateral and fluid ritual exchange with Maya dignitaries preceded the Teotihuacan state's eventual ascent to prominence.


Assuntos
Atelinae , Diplomacia , Humanos , Animais , Comportamento Ritualístico , DNA Antigo , México
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046040

RESUMO

Inflammatory pain, such as hypersensitivity resulting from surgical tissue injury, occurs as a result of interactions between the immune and nervous systems with the orchestrated recruitment and activation of tissue-resident and circulating immune cells to the site of injury. Our previous studies identified a central role for Ly6Clow myeloid cells in the pathogenesis of postoperative pain. We now show that the chemokines CCL17 and CCL22, with their cognate receptor CCR4, are key mediators of this response. Both chemokines are up-regulated early after tissue injury by skin-resident dendritic and Langerhans cells to act on peripheral sensory neurons that express CCR4. CCL22, and to a lesser extent CCL17, elicit acute mechanical and thermal hypersensitivity when administered subcutaneously; this response abrogated by pharmacological blockade or genetic silencing of CCR4. Electrophysiological assessment of dissociated sensory neurons from naïve and postoperative mice showed that CCL22 was able to directly activate neurons and enhance their excitability after injury. These responses were blocked using C 021 and small interfering RNA (siRNA)-targeting CCR4. Finally, our data show that acute postoperative pain is significantly reduced in mice lacking CCR4, wild-type animals treated with CCR4 antagonist/siRNA, as well as transgenic mice depleted of dendritic cells. Together, these results suggest an essential role for the peripheral CCL17/22:CCR4 axis in the genesis of inflammatory pain via direct communication between skin-resident dendritic cells and sensory neurons, opening therapeutic avenues for its control.


Assuntos
Células de Langerhans/metabolismo , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/metabolismo , Receptores CCR4/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Animais , Biomarcadores , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Células de Langerhans/imunologia , Camundongos , Dor Pós-Operatória/diagnóstico , Transdução de Sinais
15.
J Neurosci ; 43(30): 5458-5467, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37414560

RESUMO

Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic µ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.


Assuntos
Canabinoides , Endocanabinoides , Ratos , Masculino , Feminino , Animais , Endocanabinoides/metabolismo , Receptores de Canabinoides , Monoacilglicerol Lipases/farmacologia , Transdução de Sinais/fisiologia , Ratos Sprague-Dawley , Dor/metabolismo , Canabinoides/farmacologia , Ácido gama-Aminobutírico/metabolismo , Inflamação/tratamento farmacológico , Receptor CB1 de Canabinoide
16.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
17.
Genome Res ; 31(4): 538-550, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674350

RESUMO

The AP-1 transcription factor (TF) dimer contributes to many biological processes and environmental responses. AP-1 can be composed of many interchangeable subunits. Unambiguously determining the binding locations of these subunits in the human genome is challenging because of variable antibody specificity and affinity. Here, we definitively establish the genome-wide binding patterns of five AP-1 subunits by using CRISPR to introduce a common antibody tag on each subunit. We find limited evidence for strong dimerization preferences between subunits at steady state and find that, under a stimulus, dimerization patterns reflect changes in the transcriptome. Further, our analysis suggests that canonical AP-1 motifs indiscriminately recruit all AP-1 subunits to genomic sites, which we term AP-1 hotspots. We find that AP-1 hotspots are predictive of cell type-specific gene expression and of genomic responses to glucocorticoid signaling (more so than super-enhancers) and are significantly enriched in disease-associated genetic variants. Together, these results support a model where promiscuous binding of many AP-1 subunits to the same genomic location play a key role in regulating cell type-specific gene expression and environmental responses.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Elementos Facilitadores Genéticos/genética , Humanos , Transdução de Sinais
18.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720368

RESUMO

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Assuntos
Volume de Ventilação Pulmonar , Animais , Ovinos , Feminino , Humanos , Volume de Ventilação Pulmonar/fisiologia , Sangue Fetal/citologia , Gravidez , Citocinas/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Animais Recém-Nascidos
19.
Nat Methods ; 18(8): 965-974, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341582

RESUMO

CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. The fusion of chromatin-modifying domains to nuclease-deactivated Cas9 (dCas9) has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to the widespread adoption of these tools for in vivo studies. Here, we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting the guide RNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Epigenoma , Edição de Genes/métodos , Regulação da Expressão Gênica , Animais , Encéfalo/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Linfócitos T/metabolismo
20.
Ann Rheum Dis ; 83(5): 556-563, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38331589

RESUMO

OBJECTIVES: We aimed to cluster patients with rheumatoid arthritis (RA) based on comorbidities and then examine the association between these clusters and RA disease activity and mortality. METHODS: In this population-based study, residents of an eight-county region with prevalent RA on 1 January 2015 were identified. Patients were followed for vital status until death, last contact or 31 December 2021. Diagnostic codes for 5 years before the prevalence date were used to define 55 comorbidities. Latent class analysis was used to cluster patients based on comorbidity patterns. Standardised mortality ratios were used to assess mortality. RESULTS: A total of 1643 patients with prevalent RA (72% female; 94% white; median age 64 years, median RA duration 7 years) were studied. Four clusters were identified. Cluster 1 (n=686) included patients with few comorbidities, and cluster 4 (n=134) included older patients with 10 or more comorbidities. Cluster 2 (n=200) included patients with five or more comorbidities and high prevalences of depression and obesity, while cluster 3 (n=623) included the remainder. RA disease activity and survival differed across the clusters, with cluster 1 demonstrating more remission and mortality comparable to the general population. CONCLUSIONS: More than 40% of patients with prevalent RA did not experience worse mortality than their peers without RA. The cluster with the worst prognosis (<10% of patients with prevalent RA) was older, had more comorbidities and had less disease-modifying antirheumatic drug and biological use compared with the other clusters. Comorbidity patterns may hold the key to moving beyond a one-size-fits-all perspective of RA prognosis.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Comorbidade , Artrite Reumatoide/tratamento farmacológico , Prognóstico , Antirreumáticos/uso terapêutico , Obesidade/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA