Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 809-813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605111

RESUMO

Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.


Assuntos
Computação em Nuvem , Neurociências , Neurociências/métodos , Humanos , Neuroimagem/métodos , Reprodutibilidade dos Testes , Software , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
2.
Hum Brain Mapp ; 43(1): 129-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310331

RESUMO

The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Acidente Vascular Cerebral , Humanos , Estudos Multicêntricos como Assunto , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
4.
BMC Med Imaging ; 22(1): 5, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986790

RESUMO

Pancreas volume is reduced in individuals with diabetes and in autoantibody positive individuals at high risk for developing type 1 diabetes (T1D). Studies investigating pancreas volume are underway to assess pancreas volume in large clinical databases and studies, but manual pancreas annotation is time-consuming and subjective, preventing extension to large studies and databases. This study develops deep learning for automated pancreas volume measurement in individuals with diabetes. A convolutional neural network was trained using manual pancreas annotation on 160 abdominal magnetic resonance imaging (MRI) scans from individuals with T1D, controls, or a combination thereof. Models trained using each cohort were then tested on scans of 25 individuals with T1D. Deep learning and manual segmentations of the pancreas displayed high overlap (Dice coefficient = 0.81) and excellent correlation of pancreas volume measurements (R2 = 0.94). Correlation was highest when training data included individuals both with and without T1D. The pancreas of individuals with T1D can be automatically segmented to measure pancreas volume. This algorithm can be applied to large imaging datasets to quantify the spectrum of human pancreas volume.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Pâncreas/diagnóstico por imagem , Adolescente , Algoritmos , Diabetes Mellitus Tipo 1/patologia , Humanos , Imageamento Tridimensional/métodos , Masculino , Tamanho do Órgão , Pâncreas/patologia , Estudos Retrospectivos
5.
Neuroimage ; 226: 117585, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248256

RESUMO

New large neuroimaging studies, such as the Adolescent Brain Cognitive Development study (ABCD) and Human Connectome Project (HCP) Development studies are adopting a new T1-weighted imaging sequence with prospective motion correction (PMC) in favor of the more traditional 3-Dimensional Magnetization-Prepared Rapid Gradient-Echo Imaging (MPRAGE) sequence. Here, we used a developmental dataset (ages 5-21, N = 348) from the Healthy Brain Network (HBN) Initiative to directly compare two widely used MRI structural sequences: one based on the Human Connectome Project (MPRAGE) and another based on the ABCD study (MPRAGE+PMC). We aimed to determine if the morphometric measurements obtained from both protocols are equivalent or if one sequence has a clear advantage over the other. The sequences were also compared through quality control measurements. Inter- and intra-sequence reliability were assessed with another set of participants (N = 71) from HBN that performed two MPRAGE and two MPRAGE+PMC sequences within the same imaging session, with one MPRAGE (MPRAGE1) and MPRAGE+PMC (MPRAGE+PMC1) pair at the beginning of the session and another pair (MPRAGE2 and MPRAGE+PMC2) at the end of the session. Intraclass correlation coefficients (ICC) scores for morphometric measurements such as volume and cortical thickness showed that intra-sequence reliability is the highest with the two MPRAGE+PMC sequences and lowest with the two MPRAGE sequences. Regarding inter-sequence reliability, ICC scores were higher for the MPRAGE1 - MPRAGE+PMC1 pair at the beginning of the session than the MPRAGE1 - MPRAGE2 pair, possibly due to the higher motion artifacts in the MPRAGE2 run. Results also indicated that the MPRAGE+PMC sequence is robust, but not impervious, to high head motion. For quality control metrics, the traditional MPRAGE yielded better results than MPRAGE+PMC in 5 of the 8 measurements. In conclusion, morphometric measurements evaluated here showed high inter-sequence reliability between the MPRAGE and MPRAGE+PMC sequences, especially in images with low head motion. We suggest that studies targeting hyperkinetic populations use the MPRAGE+PMC sequence, given its robustness to head motion and higher reliability scores. However, neuroimaging researchers studying non-hyperkinetic participants can choose either MPRAGE or MPRAGE+PMC sequences, but should carefully consider the apparent tradeoff between relatively increased reliability, but reduced quality control metrics when using the MPRAGE+PMC sequence.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Pré-Escolar , Conectoma , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Adulto Jovem
6.
Neuroimage ; 235: 118001, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789137

RESUMO

Brain extraction (a.k.a. skull stripping) is a fundamental step in the neuroimaging pipeline as it can affect the accuracy of downstream preprocess such as image registration, tissue classification, etc. Most brain extraction tools have been designed for and applied to human data and are often challenged by non-human primates (NHP) data. Amongst recent attempts to improve performance on NHP data, deep learning models appear to outperform the traditional tools. However, given the minimal sample size of most NHP studies and notable variations in data quality, the deep learning models are very rarely applied to multi-site samples in NHP imaging. To overcome this challenge, we used a transfer-learning framework that leverages a large human imaging dataset to pretrain a convolutional neural network (i.e. U-Net Model), and then transferred this to NHP data using a small NHP training sample. The resulting transfer-learning model converged faster and achieved more accurate performance than a similar U-Net Model trained exclusively on NHP samples. We improved the generalizability of the model by upgrading the transfer-learned model using additional training datasets from multiple research sites in the Primate Data-Exchange (PRIME-DE) consortium. Our final model outperformed brain extraction routines from popular MRI packages (AFNI, FSL, and FreeSurfer) across a heterogeneous sample from multiple sites in the PRIME-DE with less computational cost (20 s~10 min). We also demonstrated the transfer-learning process enables the macaque model to be updated for use with scans from chimpanzees, marmosets, and other mammals (e.g. pig). Our model, code, and the skull-stripped mask repository of 136 macaque monkeys are publicly available for unrestricted use by the neuroimaging community at https://github.com/HumanBrainED/NHP-BrainExtraction.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Modelos Teóricos , Redes Neurais de Computação , Neuroimagem/métodos , Adulto , Animais , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Macaca , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Cereb Cortex ; 30(3): 1171-1184, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31595961

RESUMO

The collection of eye gaze information during functional magnetic resonance imaging (fMRI) is important for monitoring variations in attention and task compliance, particularly for naturalistic viewing paradigms (e.g., movies). However, the complexity and setup requirements of current in-scanner eye tracking solutions can preclude many researchers from accessing such information. Predictive eye estimation regression (PEER) is a previously developed support vector regression-based method for retrospectively estimating eye gaze from the fMRI signal in the eye's orbit using a 1.5-min calibration scan. Here, we provide confirmatory validation of the PEER method's ability to infer eye gaze on a TR-by-TR basis during movie viewing, using simultaneously acquired eye tracking data in five individuals (median angular deviation < 2°). Then, we examine variations in the predictive validity of PEER models across individuals in a subset of data (n = 448) from the Child Mind Institute Healthy Brain Network Biobank, identifying head motion as a primary determinant. Finally, we accurately classify which of the two movies is being watched based on the predicted eye gaze patterns (area under the curve = 0.90 ± 0.02) and map the neural correlates of eye movements derived from PEER. PEER is a freely available and easy-to-use tool for determining eye fixations during naturalistic viewing.


Assuntos
Encéfalo/fisiologia , Medições dos Movimentos Oculares , Fixação Ocular/fisiologia , Imageamento por Ressonância Magnética , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Análise de Regressão
8.
Neuroimage ; 170: 68-82, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739120

RESUMO

Moving from group level to individual level functional parcellation maps is a critical step for developing a rich understanding of the links between individual variation in functional network architecture and cognitive and clinical phenotypes. Still, the identification of functional units in the brain based on intrinsic functional connectivity and its dynamic variations between and within subjects remains challenging. Recently, the bootstrap analysis of stable clusters (BASC) framework was developed to quantify the stability of functional brain networks both across and within subjects. This multi-level approach utilizes bootstrap resampling for both individual and group-level clustering to delineate functional units based on their consistency across and within subjects, while providing a measure of their stability. Here, we optimized the BASC framework for functional parcellation of the basal ganglia by investigating a variety of clustering algorithms and similarity measures. Reproducibility and test-retest reliability were computed to validate this analytic framework as a tool to describe inter-individual differences in the stability of functional networks. The functional parcellation revealed by stable clusters replicated previous divisions found in the basal ganglia based on intrinsic functional connectivity. While we found moderate to high reproducibility, test-retest reliability was high at the boundaries of the functional units as well as within their cores. This is interesting because the boundaries between functional networks have been shown to explain most individual phenotypic variability. The current study provides evidence for the consistency of the parcellation of the basal ganglia, and provides the first group level parcellation built from individual-level cluster solutions. These novel results demonstrate the utility of BASC for quantifying inter-individual differences in the functional organization of brain regions, and encourage usage in future studies.


Assuntos
Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Mapeamento Encefálico/métodos , Individualidade , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Neuroimage ; 169: 407-418, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29278774

RESUMO

Data quality is increasingly recognized as one of the most important confounding factors in brain imaging research. It is particularly important for studies of brain development, where age is systematically related to in-scanner motion and data quality. Prior work has demonstrated that in-scanner head motion biases estimates of structural neuroimaging measures. However, objective measures of data quality are not available for most structural brain images. Here we sought to identify quantitative measures of data quality for T1-weighted volumes, describe how these measures relate to cortical thickness, and delineate how this in turn may bias inference regarding associations with age in youth. Three highly-trained raters provided manual ratings of 1840 raw T1-weighted volumes. These images included a training set of 1065 images from Philadelphia Neurodevelopmental Cohort (PNC), a test set of 533 images from the PNC, as well as an external test set of 242 adults acquired on a different scanner. Manual ratings were compared to automated quality measures provided by the Preprocessed Connectomes Project's Quality Assurance Protocol (QAP), as well as FreeSurfer's Euler number, which summarizes the topological complexity of the reconstructed cortical surface. Results revealed that the Euler number was consistently correlated with manual ratings across samples. Furthermore, the Euler number could be used to identify images scored "unusable" by human raters with a high degree of accuracy (AUC: 0.98-0.99), and out-performed proxy measures from functional timeseries acquired in the same scanning session. The Euler number also was significantly related to cortical thickness in a regionally heterogeneous pattern that was consistent across datasets and replicated prior results. Finally, data quality both inflated and obscured associations with age during adolescence. Taken together, these results indicate that reliable measures of data quality can be automatically derived from T1-weighted volumes, and that failing to control for data quality can systematically bias the results of studies of brain maturation.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Confiabilidade dos Dados , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Controle de Qualidade , Adolescente , Adulto , Estudos de Coortes , Conjuntos de Dados como Assunto , Humanos
10.
PLoS Comput Biol ; 13(3): e1005209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278228

RESUMO

The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.


Assuntos
Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Sistemas de Informação em Radiologia/organização & administração , Software , Interface Usuário-Computador , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
11.
Neuroimage ; 157: 521-530, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625875

RESUMO

Naturalistic viewing paradigms such as movies have been shown to reduce participant head motion and improve arousal during fMRI scanning relative to task-free rest, and have been used to study both functional connectivity and stimulus-evoked BOLD-signal changes. These task-based hemodynamic changes are synchronized across subjects and involve large areas of the cortex, and it is unclear whether individual differences in functional connectivity are enhanced or diminished under such naturalistic conditions. This work first aims to characterize variability in BOLD-signal based functional connectivity (FC) across 2 distinct movie conditions and eyes-open rest (n=31 healthy adults, 2 scan sessions each). We found that movies have higher within- and between-subject correlations in cluster-wise FC relative to rest. The anatomical distribution of inter-individual variability was similar across conditions, with higher variability occurring at the lateral prefrontal lobes and temporoparietal junctions. Second, we used an unsupervised test-retest matching algorithm that identifies individual subjects from within a group based on FC patterns, quantifying the accuracy of the algorithm across the three conditions. The movies and resting state all enabled identification of individual subjects based on FC matrices, with accuracies between 61% and 100%. Overall, pairings involving movies outperformed rest, and the social, faster-paced movie attained 100% accuracy. When the parcellation resolution, scan duration, and number of edges used were increased, accuracies improved across conditions, and the pattern of movies>rest was preserved. These results suggest that using dynamic stimuli such as movies enhances the detection of FC patterns that are unique at the individual level.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Individualidade , Imageamento por Ressonância Magnética/métodos , Filmes Cinematográficos , Percepção Visual/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Aprendizado de Máquina não Supervisionado , Adulto Jovem
12.
Neuroimage ; 144(Pt B): 275-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27423255

RESUMO

In 2011, the "ADHD-200 Global Competition" was held with the aim of identifying biomarkers of attention-deficit/hyperactivity disorder from resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals. Statisticians and computer scientists were potentially the most qualified for the machine learning aspect of the competition, but generally lacked the specialized skills to implement the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) (http://www.nitrc.org/frs/?group_id=383). This "ADHD-200 Preprocessed" release included multiple analytical pipelines to cater to different philosophies of data analysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks, fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey matter density maps. The data was used by several teams who competed in the ADHD-200 Global Competition, including the winning entry by a group of biostaticians. To the best of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of preprocessed resting-state fMRI and structural MRI data, and remains to this day the only resource featuring a battery of alternative processing paths.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Bases de Dados Factuais , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Adolescente , Adulto , Criança , Feminino , Humanos , Disseminação de Informação , Masculino , Adulto Jovem
13.
Neuroimage ; 147: 736-745, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865923

RESUMO

Resting-state functional Magnetic Resonance Imaging (R-fMRI) holds the promise to reveal functional biomarkers of neuropsychiatric disorders. However, extracting such biomarkers is challenging for complex multi-faceted neuropathologies, such as autism spectrum disorders. Large multi-site datasets increase sample sizes to compensate for this complexity, at the cost of uncontrolled heterogeneity. This heterogeneity raises new challenges, akin to those face in realistic diagnostic applications. Here, we demonstrate the feasibility of inter-site classification of neuropsychiatric status, with an application to the Autism Brain Imaging Data Exchange (ABIDE) database, a large (N=871) multi-site autism dataset. For this purpose, we investigate pipelines that extract the most predictive biomarkers from the data. These R-fMRI pipelines build participant-specific connectomes from functionally-defined brain areas. Connectomes are then compared across participants to learn patterns of connectivity that differentiate typical controls from individuals with autism. We predict this neuropsychiatric status for participants from the same acquisition sites or different, unseen, ones. Good choices of methods for the various steps of the pipeline lead to 67% prediction accuracy on the full ABIDE data, which is significantly better than previously reported results. We perform extensive validation on multiple subsets of the data defined by different inclusion criteria. These enables detailed analysis of the factors contributing to successful connectome-based prediction. First, prediction accuracy improves as we include more subjects, up to the maximum amount of subjects available. Second, the definition of functional brain areas is of paramount importance for biomarker discovery: brain areas extracted from large R-fMRI datasets outperform reference atlases in the classification tasks.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Conjuntos de Dados como Assunto , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto/métodos , Adolescente , Adulto , Biomarcadores , Córtex Cerebral/diagnóstico por imagem , Criança , Conectoma/normas , Conjuntos de Dados como Assunto/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Estudos Multicêntricos como Assunto/normas , Reprodutibilidade dos Testes
14.
Neuroimage ; 148: 179-188, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890805

RESUMO

The disparity between the chronological age of an individual and their brain-age measured based on biological information has the potential to offer clinically relevant biomarkers of neurological syndromes that emerge late in the lifespan. While prior brain-age prediction studies have relied exclusively on either structural or functional brain data, here we investigate how multimodal brain-imaging data improves age prediction. Using cortical anatomy and whole-brain functional connectivity on a large adult lifespan sample (N=2354, age 19-82), we found that multimodal data improves brain-based age prediction, resulting in a mean absolute prediction error of 4.29 years. Furthermore, we found that the discrepancy between predicted age and chronological age captures cognitive impairment. Importantly, the brain-age measure was robust to confounding effects: head motion did not drive brain-based age prediction and our models generalized reasonably to an independent dataset acquired at a different site (N=475). Generalization performance was increased by training models on a larger and more heterogeneous dataset. The robustness of multimodal brain-age prediction to confounds, generalizability across sites, and sensitivity to clinically-relevant impairments, suggests promising future application to the early prediction of neurocognitive disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Disfunção Cognitiva/diagnóstico por imagem , Imagem Multimodal/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Disfunção Cognitiva/psicologia , Feminino , Movimentos da Cabeça , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Testes Neuropsicológicos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto Jovem
15.
Neuroimage ; 146: 157-170, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836708

RESUMO

This data descriptor describes a repository of openly shared data from an experiment to assess inter-individual differences in default mode network (DMN) activity. This repository includes cross-sectional functional magnetic resonance imaging (fMRI) data from the Multi Source Interference Task, to assess DMN deactivation, the Moral Dilemma Task, to assess DMN activation, a resting state fMRI scan, and a DMN neurofeedback paradigm, to assess DMN modulation, along with accompanying behavioral and cognitive measures. We report technical validation from n=125 participants of the final targeted sample of 180 participants. Each session includes acquisition of one whole-brain anatomical scan and whole-brain echo-planar imaging (EPI) scans, acquired during the aforementioned tasks and resting state. The data includes several self-report measures related to perseverative thinking, emotion regulation, and imaginative processes, along with a behavioral measure of rapid visual information processing. Technical validation of the data confirms that the tasks deactivate and activate the DMN as expected. Group level analysis of the neurofeedback data indicates that the participants are able to modulate their DMN with considerable inter-subject variability. Preliminary analysis of behavioral responses and specifically self-reported sleep indicate that as many as 73 participants may need to be excluded from an analysis depending on the hypothesis being tested. The present data are linked to the enhanced Nathan Kline Institute, Rockland Sample and builds on the comprehensive neuroimaging and deep phenotyping available therein. As limited information is presently available about individual differences in the capacity to directly modulate the default mode network, these data provide a unique opportunity to examine DMN modulation ability in relation to numerous phenotypic characteristics.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Bases de Dados Factuais , Imageamento por Ressonância Magnética , Transtornos Mentais/fisiopatologia , Neurorretroalimentação , Adulto , Imagem Ecoplanar , Feminino , Humanos , Individualidade , Disseminação de Informação , Armazenamento e Recuperação da Informação , Masculino , Pessoa de Meia-Idade , Vias Neurais , Neuroimagem , Fenótipo , Adulto Jovem
16.
Depress Anxiety ; 34(7): 578-587, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28426908

RESUMO

Despite decades of research, visions of transforming neuropsychiatry through the development of brain imaging-based "growth charts" or "lab tests" have remained out of reach. In recent years, there is renewed enthusiasm about the prospect of achieving clinically useful tools capable of aiding the diagnosis and management of neuropsychiatric disorders. The present work explores the basis for this enthusiasm. We assert that there is no single advance that currently has the potential to drive the field of clinical brain imaging forward. Instead, there has been a constellation of advances that, if combined, could lead to the identification of objective brain imaging-based markers of illness. In particular, we focus on advances that are helping to (1) elucidate the research agenda for biological psychiatry (e.g., neuroscience focus, precision medicine), (2) shift research models for clinical brain imaging (e.g., big data exploration, standardization), (3) break down research silos (e.g., open science, calls for reproducibility and transparency), and (4) improve imaging technologies and methods. Although an arduous road remains ahead, these advances are repositioning the brain imaging community for long-term success.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Neuropsiquiatria/métodos , Humanos , Neuroimagem/normas , Neuropsiquiatria/normas
17.
Cereb Cortex ; 26(11): 4192-4211, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27600846

RESUMO

Resting state fMRI (R-fMRI) is a powerful in-vivo tool for examining the functional architecture of the human brain. Recent studies have demonstrated the ability to characterize transitions between functionally distinct cortical areas through the mapping of gradients in intrinsic functional connectivity (iFC) profiles. To date, this novel approach has primarily been applied to iFC profiles averaged across groups of individuals, or in one case, a single individual scanned multiple times. Here, we used a publically available R-fMRI dataset, in which 30 healthy participants were scanned 10 times (10 min per session), to investigate differences in full-brain transition profiles (i.e., gradient maps, edge maps) across individuals, and their reliability. 10-min R-fMRI scans were sufficient to achieve high accuracies in efforts to "fingerprint" individuals based upon full-brain transition profiles. Regarding test-retest reliability, the image-wise intraclass correlation coefficient (ICC) was moderate, and vertex-level ICC varied depending on region; larger durations of data yielded higher reliability scores universally. Initial application of gradient-based methodologies to a recently published dataset obtained from twins suggested inter-individual variation in areal profiles might have genetic and familial origins. Overall, these results illustrate the utility of gradient-based iFC approaches for studying inter-individual variation in brain function.

18.
Cereb Cortex ; 26(5): 2341-2352, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891986

RESUMO

One of the grand challenges faced by neuroscience is to delineate the determinants of interindividual variation in the comprehensive structural and functional connection matrices that comprise the human connectome. At present, this endeavor appears most tractable at the macroanatomic scale, where intrinsic brain activity exhibits robust patterns of synchrony that recapitulate core functional circuits at the individual level. Here, we use a classical twin study design to examine the heritability of intrinsic functional network properties in 101 twin pairs, including network activity (i.e., variance of a network's specific temporal fluctuations) and internetwork coherence (i.e., correlation between networks' specific temporal fluctuations). Five of 7 networks exhibited significantly heritable (23.3-65.2%) network activity, 6 of the 21 internetwork coherences were significantly heritable (25.6-42.0%), and 11 of the 21 internetwork coherences were significantly influenced by common environmental factors (18.0-47.1%). These results suggest that the source of interindividual variation in functional connectome has a modular architecture: individual modules represented by intrinsic connectivity networks are genetic controlled, while environmental factors influence the interplays between the modules. This work further provides network-specific hypotheses for discovery of the specific genetic and environmental factors influencing functional specialization and integration of the human brain.


Assuntos
Encéfalo/fisiologia , Conectoma , Interação Gene-Ambiente , Individualidade , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Adulto Jovem
19.
Neuroimage ; 127: 86-96, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26608241

RESUMO

Transcranial magnetic stimulation (TMS) is a powerful investigational tool for in vivo manipulation of regional or network activity, with a growing number of potential clinical applications. Unfortunately, the vast majority of targeting strategies remain limited by their reliance on non-realistic brain models and assumptions that anatomo-functional relationships are 1:1. Here, we present an integrated framework that combines anatomically realistic finite element models of the human head with resting functional MRI to predict functional networks targeted via TMS at a given coil location and orientation. Using data from the Human Connectome Project, we provide an example implementation focused on dorsolateral prefrontal cortex (DLPFC). Three distinct DLPFC stimulation zones were identified, differing with respect to the network to be affected (default, frontoparietal) and sensitivity to coil orientation. Network profiles generated for DLPFC targets previously published for treating depression revealed substantial variability across studies, highlighting a potentially critical technical issue.


Assuntos
Mapeamento Encefálico/métodos , Modelos Neurológicos , Córtex Pré-Frontal , Estimulação Magnética Transcraniana/métodos , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana/normas
20.
Nat Methods ; 10(6): 524-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23722212

RESUMO

At macroscopic scales, the human connectome comprises anatomically distinct brain areas, the structural pathways connecting them and their functional interactions. Annotation of phenotypic associations with variation in the connectome and cataloging of neurophenotypes promise to transform our understanding of the human brain. In this Review, we provide a survey of magnetic resonance imaging­based measurements of functional and structural connectivity. We highlight emerging areas of development and inquiry and emphasize the importance of integrating structural and functional perspectives on brain architecture.


Assuntos
Conectoma , Imageamento por Ressonância Magnética/métodos , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA