RESUMO
Platelets are emerging as a promising source of blood biomarkers for several pathologies, including cancer. New automated techniques for easier manipulation of platelets in the context of lab-on-a-chips could be of great support for liquid biopsy. Here, several polymeric materials were investigated for their behavior in terms of adhesion and activation of human platelets. Polymeric materials were selected among the most used in microfabrication (PDMS, PMMA and COC) and commercial and home-made resins for 3D printing technology with the aim to identify the most suitable for the realization of microdevices for human platelets isolation and analysis. To visualize adherent platelets and their activation state scanning, electron microscopy was used, while confocal microscopy was used for evaluating platelets' features. In addition, atomic force microscopy was employed to further study platelets adherent to the polymeric materials. Polymers were divided in two main groups: the most prone to platelet adhesion and materials that cause few or no platelets to adhere. Therefore, different polymeric materials could be identified as suitable for the realization of microdevices aimed at capturing human platelets, while other materials could be employed for the fabrication of microdevices or parts of microdevices for the processing of platelets, without loss on surfaces during the process.
Assuntos
Plaquetas , Adesividade Plaquetária , Adsorção , Materiais Biocompatíveis , Humanos , Biópsia Líquida , Microscopia Eletrônica de Varredura , Adesividade Plaquetária/fisiologia , PolímerosRESUMO
Rodent-borne hanta- and arenaviruses are an emerging public health threat in Europe; however, their circulation in human populations is usually underestimated since most infections are asymptomatic. Compared to other European countries, Italy is considered 'low risk' for these viruses, yet in the Province of Trento, two pathogenic hantaviruses (Puumala and Dobrava-Belgrade virus) and one arenavirus (Lymphocytic Choriomeningitis Virus) are known to circulate in rodent reservoirs. In this paper, we performed a follow-up serological screening in humans to detect variation in the prevalence of these three viruses compared to previous analyses carried out in 2002. We also used a statistical model to link seropositivity to risk factors such as occupational exposure, cutting firewood, hunting, collecting mushrooms, having a garden and owning a woodshed, a dog or a companion rodent. We demonstrate a significant increase in the seroprevalence of all three target viruses between 2002 and 2015, but no risk factors that we considered were significantly correlated with this increase. We conclude that the general exposure of residents in the Alps to these viruses has probably increased during the last decade. These results provide an early warning to public health authorities, and we suggest more detailed diagnostic and clinical investigations on suspected cases.